Presentation is loading. Please wait.

Presentation is loading. Please wait.

Double-beta decay and BSM physics: shell model nuclear matrix elements for competing mechanisms Mihai Horoi Department of Physics, Central Michigan University,

Similar presentations


Presentation on theme: "Double-beta decay and BSM physics: shell model nuclear matrix elements for competing mechanisms Mihai Horoi Department of Physics, Central Michigan University,"— Presentation transcript:

1 Double-beta decay and BSM physics: shell model nuclear matrix elements for competing mechanisms
Mihai Horoi Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA Support from NSF grant PHY and DOE/SciDAC grants DE-SC /SC is acknowledged ACFI-FRIB M. Horoi CMU

2 Overview Neutrino physics within and beyond the Standard Model (BSM)
DBD mechanisms: light Majorana neutrino exchange, right-handed currents, heavy neutrinos, SUSY R-parity violation,… 48Ca: 2v and 0v shell-model matrix elements Beyond closure approximation 76Ge, 82Se, 130Te, and 136Xe results ACFI-FRIB M. Horoi CMU

3 Classical Double Beta Decay Problem
A.S. Barabash, PRC 81 (2010) 2-neutrino double beta decay neutrinoless double beta decay Adapted from Avignone, Elliot, Engel, Rev. Mod. Phys. 80, 481 (2008) -> RMP08 ACFI-FRIB M. Horoi CMU

4 Neutrino Masses Tritium decay:
Cosmology: CMB power spectrum, BAO, etc, Two neutrino mass hierarchies ACFI-FRIB M. Horoi CMU

5 Neutrino bb effective mass
Cosmology constraint 76Ge Klapdor claim 2006 ACFI-FRIB M. Horoi CMU

6 The Minimal Standard Model
? ACFI-FRIB M. Horoi CMU

7 Too Small Yukawa Couplings?
arXiv: Standard Model fermion masses ACFI-FRIB M. Horoi CMU

8 The origin of Majorana neutrino masses
Type I see-saw arXiv: v3 SU2eimi term dominates in most cases TeV collider Majorana tests not relevant ACFI-FRIB M. Horoi CMU

9 The origin of Majorana neutrino masses
See-saw mechanisms Left-Right Symmetric model arXiv: v3 WR search at CMS arXiv: ACFI-FRIB M. Horoi CMU

10 Majorana neutrino masses
ACFI-FRIB M. Horoi CMU

11 Low-energy contributions to 0vbb decay
Low-energy effective Hamiltonian ACFI-FRIB M. Horoi CMU

12 Contributions to 0vbb decay: no neutrinos
See-saw type III GUT/SUSY R-parity violation Squark exchange Gluino exchange Hadronization /w R-parity v. ACFI-FRIB M. Horoi CMU

13 The Black Box Theorem J. Schechter and J.W.F Valle, PRD 25, 2951 (1982) E. Takasugi, PLB 149, 372 (1984) J.F. Nieves, PLB 145, 375 (1984) M. Hirsch, S. Kovalenko, I. Schmidt, PLB 646, 106 (2006) 0nbb observed  at some level (i) Neutrinos are Majorana fermions. (ii) Lepton number conservation is violated by 2 units Regardless of the dominant 0nbb mechanism! ACFI-FRIB M. Horoi CMU

14 DBD signals from different mechanisms
arXiv: 2b0n rhc(h) ACFI-FRIB M. Horoi CMU

15 The 0vDBD half-life PRD 83, (2011) ACFI-FRIB M. Horoi CMU

16 Two Non-Interfering Mechanisms
Assume T1/2(76Ge)=22.3x1024 y ACFI-FRIB M. Horoi CMU

17 Is there a more general description?
Long-range terms: (a) - (c ) Short-range terms: (d) ACFI-FRIB M. Horoi CMU

18 Summary of 0vDBD mechanisms
The mass mechanism (a.k.a. light-neutrino exchange) is likely, and the simplest BSM scenario. Low mass sterile neutrino would complicate analysis Right-handed heavy-neutrino exchange is possible, and requires knowledge of half-lives for more isotopes. h- and l- mechanisms are possible, but could be ruled in/out by energy and angular distributions. Left-right symmetric model may be also (un)validated at LHC/colliders. SUSY/R-parity, KK, GUT, etc, scenarios need to be checked, but validated by other means. ACFI-FRIB M. Horoi CMU

19 2v Double Beta Decay (DBD) of 48Ca
The choice of valence space is important! ISR 48Ca 48Ti pf 24.0 12.0 f7 p3 10.3 5.2 Ikeda satisfied in pf ! Horoi, Stoica, Brown, PRC 75, (2007) ACFI-FRIB M. Horoi CMU

20 Double Beta Decay NME for 48Ca
M. Horoi, PRC 87, (2013) ACFI-FRIB M. Horoi CMU

21 Closure Approximation and Beyond in Shell Model
Challenge: there are about 100,000 Jk states in the sum for 48Ca Much more intermediate states for heavier nuclei, such as 76Ge!!! No-closure may need states out of the model space (not considered). Minimal model spaces 82Se : 10M states 130Te : 22M states 76Ge : 150M states ACFI-FRIB M. Horoi CMU

22 82Se: PRC 89, (2014) ACFI-FRIB M. Horoi CMU

23 New Approach to calculate NME: New Tests of Nuclear Structure
Brown, Horoi, Senkov arXiv: , ACFI-FRIB M. Horoi CMU

24 136Xe bb Experimental Results
Publication Experiment T2n1/2 T0n1/2(lim) T0n1/2(Sens) PRL 110, KamLAND-Zen > 1.9x1025 y 1.1x1025 y PRC 89, EXO-200 ( )x1021 y Nature 510, 229 >1.1x1025 y 1.9x1025 y PRC 85, ( )x1021 y EXO-200 arXiv: , Nature 510, 229 ACFI-FRIB M. Horoi CMU

25 136Xe 2nbb Results np - nh 0g7/2 1d5/2 1d3/2 2s5/2 0h11/2 model space
New effective interaction, 0h11/2 2s5/2 1d3/2 1d5/2 0g7/2 0h9/2 0g9/2 0h11/2 2s5/2 1d3/2 1d5/2 0g7/2 0h9/2 0g9/2 0g7/2 1d5/2 1d3/2 2s5/2 0h11/2 model space 0h11/2 2s5/2 1d3/2 1d5/2 0g7/2 0h9/2 0g9/2 0h11/2 2s5/2 1d3/2 1d5/2 0g7/2 0h9/2 0g9/2 0g9/2 0g7/21d5/2 1d3/2 2s5/2 0h11/2 0h9/2 n (0+) n (1+) M(2v) 0.062 1 0.091 0.037 2 0.020 np - nh ACFI-FRIB M. Horoi CMU

26 S. Vigdor talk at LRP Town Meeting, Chicago, Sep 28-29, 2014
ACFI-FRIB M. Horoi CMU

27 IBA-2 J. Barea, J. Kotila, and F. Iachello, Phys. Rev
IBA J. Barea, J. Kotila, and F. Iachello, Phys. Rev. C 87, (2013). QRPA-En M. T. Mustonen and J. Engel, Phys. Rev. C 87, (2013). QRPA-Jy J. Suhonen, O. Civitarese, Phys. NPA –232 (2010). QRPA-Tu A. Faessler, M. Gonzalez, S. Kovalenko, and F. Simkovic, arXiv: ISM-Men J. Menéndez, A. Poves, E. Caurier, F. Nowacki, NPA –151 (2009). SM M. Horoi et. al. PRC 88, (2013), PRC 89, (2014), PRC 90, PRC 89, (2014), in preparation, PRL 110, (2013). ACFI-FRIB M. Horoi CMU

28 IBA-2 J. Barea, J. Kotila, and F. Iachello, Phys. Rev
IBA J. Barea, J. Kotila, and F. Iachello, Phys. Rev. C 87, (2013). QRPA-Tu A. Faessler, M. Gonzalez, S. Kovalenko, and F. Simkovic, arXiv: SM M. Horoi et. al. PRC 88, (2013), PRC 90, PRC 89, (2014), in preparation, PRL 110, (2013). ACFI-FRIB M. Horoi CMU

29 Take-Away Points Observation of 0nbb will signal New Physics Beyond the Standard Model. Black box theorem (all flavors + oscillations) 0nbb observed  at some level (i) Neutrinos are Majorana fermions. (ii) Lepton number conservation is violated by 2 units Regardless of the dominant 0nbb mechanism! ACFI-FRIB M. Horoi CMU

30 Take-Away Points The analysis and guidance of the experimental efforts need accurate Nuclear Matrix Elements. ACFI-FRIB M. Horoi CMU

31 Take-Away Points Extracting information about Majorana CP-violation phases may require the mass hierarchy from LBNE, cosmology, etc, but also accurate Nuclear Matrix Elements. ACFI-FRIB M. Horoi CMU

32 Take-Away Points Alternative mechanisms to 0nbb need to be carefully tested: many isotopes, energy and angular correlations. These analyses also require accurate Nuclear Matrix Elements. SuperNEMO; 82Se ACFI-FRIB M. Horoi CMU

33 Take-Away Points Accurate shell model NME for different decay mechanisms were recently calculated. The method provides optimal closure energies for the mass mechanism. Decomposition of the matrix elements can be used for selective quenching of classes of states, and for testing nuclear structure. 76Ge ACFI-FRIB M. Horoi CMU

34 Experimental info needed
ACFI-FRIB M. Horoi CMU

35 Collaborators: Alex Brown, NSCL@MSU Roman Senkov, CMU and CUNY
Andrei Neacsu, CMU Jonathan Engel, UNC Jason Holt, TRIUMF ACFI-FRIB M. Horoi CMU

36 Summary and Outlook Observation of neutrinoless double beta decay would signal physics beyond the Standard Model: massive Majorana neutrinos, right-handed currents, SUSY LNV, etc 48Ca and 136Xe cases suggest that 2 double-beta decay can be described reasonably within the shell model with standard quenching, provided that all spin-orbit partners are included. Higher order effects for 0 NME included: range 1.0 – 1.4 Reliable 0bb nuclear matrix elements could be used to identify the dominant mechanism if energy/angular correlations and data for several isotopes become available. The effects of the quenching and the missing spin-orbit partners are important (see the 136Xe case), and they need to be further investigated for 76Ge, 82Se and 130Te. ACFI-FRIB M. Horoi CMU

37 Effective Field Theory for BSM
V. Cirigliano talk at LPR Town Meeting, Chicago, Sep 28-29, 2014 ACFI-FRIB M. Horoi CMU

38 Effective Field Theory for BSM
M. Hirsch talk at NEUTRINO 2014 ACFI-FRIB M. Horoi CMU

39 Comparisons of M0n 0nbb Results
From T. Rodriguez, G. Martinez-Pinedo, Phys. Rev. Lett. 105, (2010) Present Shell Model results: Phys. Rev. Lett. 110, (2013) PRC 89, & 88, (2013) PRC 89, (2014), submitted (MS) ACFI-FRIB M. Horoi CMU

40 Shell Model GT Quenching
empty valence frozen core core polarization: Phys.Rep. 261, 125 (1995) J. Menendez, D. Gazit and A. Schwenk, arXiV: , PRL 107 ACFI-FRIB M. Horoi CMU

41 The Minimal Standard Model
? ACFI-FRIB M. Horoi CMU

42 The effect of larger model spaces for 48Ca
M(0v) SDPFU SDPFMUP 0.941 0.623 0+2 1.182 (26%) 1.004 (61%) M(0v) / GXPF1A 0.733 nd ord./GXPF1A 1.301 (77%) arXiv: , PRC 89, (2014) SDPFU: PRC 79, (2009) PRC 87, (2013) SDPFMUP: PRC 86, (R) (2012) ACFI-FRIB M. Horoi CMU

43 Other Shell Model Results
0g7/2 1d5/2 1d3/2 2s5/2 0h11/2 valence space ACFI-FRIB M. Horoi CMU

44 S. Vigdor talk at LPR Town Meeting, Chicago, Sep 28-29, 2014
ACFI-FRIB M. Horoi CMU

45 The Black Box Theorem J. Schechter and J.W.F Valle, PRD 25, 2951 (1982) E. Takasugi, PLB 149, 372 (1984) J.F. Nieves, PLB 145, 375 (1984) M. Hirsch, S. Kovalenko, I. Schmidt, PLB 646, 106 (2006) However: M. Duerr et al, JHEP 06 (2011) 91 0nbb observed  at some level (i) Neutrinos are Majorana fermions. (ii) Lepton number conservation is violated by 2 units Regardless of the dominant 0nbb mechanism! ACFI-FRIB M. Horoi CMU

46 ACFI-FRIB M. Horoi CMU

47 Neutrino Oscillations
NH IH ACFI-FRIB M. Horoi CMU

48 Low-energy contributions to 0vbb decay
Low-energy effective Hamiltonian ACFI-FRIB M. Horoi CMU

49 Some mechanisms tested at LHC
PRD 86, (2012) Left-right symmetric model arXiv: ACFI-FRIB M. Horoi CMU

50 Some mechanisms tested at LHC
Broken D-parity left-right symmetric model: arXiv: Recent CMS results a 2.8s effect arXiv: ACFI-FRIB M. Horoi CMU

51 Neutrino Oscillations
ACFI-FRIB M. Horoi CMU

52 Consequences of Majorana Neutrinos
- Leptogenesis (DL=2) => (SM sphalerons) => Baryogenesis - Exotic (DL=2) decays: - Larger magnetic moments => Larger decay rates of heavy neutrino - Different neutrino contribution to Supernovae explosion mechanism => different signals measured on Earth detectors ACFI-FRIB M. Horoi CMU

53 Fermion masses in and beyond the Standard Model
Standard Model photon (m=0) Standard Model Dirac fermions (m>0) Standard Model neutrino (m=0) Beyond Standard Model Dirac neutrino (m>0) Beyond Standard Model Majorana neutrino (m>0) ACFI-FRIB M. Horoi CMU

54 Matrix Elements: Light Neutrinos
Present Interacting Shell-Model PRL 109, (2012) PRD 83, (2011) NPA 818, 139 (2009) ACFI-FRIB M. Horoi CMU

55 Matrix Elements: Heavy Neutrinos
Present Interacting Shell-Model PRL 109, (2012) PRD 83, (2011) ACFI-FRIB M. Horoi CMU

56 Fermions masses in the Standard Model
Standard Model photon (m=0) Standard Model Dirac fermions (m>0) Standard Model neutrino (m=0) Extended Standard Model Dirac neutrino (m>0) Beyond Standard Model Majorana neutrino (m>0) ACFI-FRIB M. Horoi CMU

57 Beyond Closure in Shell Model
Challenge: there are about 100,000 Jk states in the sum for 48Ca !!! Senkov & Horoi, PRC 88, (2013) About 300 intermediate states for each spin are (more than) enough GT dominates, and exhibits the largest change A 8-12% increase from closure was found ACFI-FRIB M. Horoi CMU

58 76Ge ACFI-FRIB M. Horoi CMU

59 DBD signals from different mechanisms
ACFI-FRIB M. Horoi CMU


Download ppt "Double-beta decay and BSM physics: shell model nuclear matrix elements for competing mechanisms Mihai Horoi Department of Physics, Central Michigan University,"

Similar presentations


Ads by Google