Download presentation
Presentation is loading. Please wait.
Published byJohnathan Wells Modified over 9 years ago
1
Double-beta decay and BSM physics: shell model nuclear matrix elements for competing mechanisms
Mihai Horoi Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA Support from NSF grant PHY and DOE/SciDAC grants DE-SC /SC is acknowledged ACFI-FRIB M. Horoi CMU
2
Overview Neutrino physics within and beyond the Standard Model (BSM)
DBD mechanisms: light Majorana neutrino exchange, right-handed currents, heavy neutrinos, SUSY R-parity violation,… 48Ca: 2v and 0v shell-model matrix elements Beyond closure approximation 76Ge, 82Se, 130Te, and 136Xe results ACFI-FRIB M. Horoi CMU
3
Classical Double Beta Decay Problem
A.S. Barabash, PRC 81 (2010) 2-neutrino double beta decay neutrinoless double beta decay Adapted from Avignone, Elliot, Engel, Rev. Mod. Phys. 80, 481 (2008) -> RMP08 ACFI-FRIB M. Horoi CMU
4
Neutrino Masses Tritium decay:
Cosmology: CMB power spectrum, BAO, etc, Two neutrino mass hierarchies ACFI-FRIB M. Horoi CMU
5
Neutrino bb effective mass
Cosmology constraint 76Ge Klapdor claim 2006 ACFI-FRIB M. Horoi CMU
6
The Minimal Standard Model
? ACFI-FRIB M. Horoi CMU
7
Too Small Yukawa Couplings?
arXiv: Standard Model fermion masses ACFI-FRIB M. Horoi CMU
8
The origin of Majorana neutrino masses
Type I see-saw arXiv: v3 SU2eimi term dominates in most cases TeV collider Majorana tests not relevant ACFI-FRIB M. Horoi CMU
9
The origin of Majorana neutrino masses
See-saw mechanisms Left-Right Symmetric model arXiv: v3 WR search at CMS arXiv: ACFI-FRIB M. Horoi CMU
10
Majorana neutrino masses
ACFI-FRIB M. Horoi CMU
11
Low-energy contributions to 0vbb decay
Low-energy effective Hamiltonian ACFI-FRIB M. Horoi CMU
12
Contributions to 0vbb decay: no neutrinos
See-saw type III GUT/SUSY R-parity violation Squark exchange Gluino exchange Hadronization /w R-parity v. ACFI-FRIB M. Horoi CMU
13
The Black Box Theorem J. Schechter and J.W.F Valle, PRD 25, 2951 (1982) E. Takasugi, PLB 149, 372 (1984) J.F. Nieves, PLB 145, 375 (1984) M. Hirsch, S. Kovalenko, I. Schmidt, PLB 646, 106 (2006) 0nbb observed at some level (i) Neutrinos are Majorana fermions. (ii) Lepton number conservation is violated by 2 units Regardless of the dominant 0nbb mechanism! ACFI-FRIB M. Horoi CMU
14
DBD signals from different mechanisms
arXiv: 2b0n rhc(h) ACFI-FRIB M. Horoi CMU
15
The 0vDBD half-life PRD 83, (2011) ACFI-FRIB M. Horoi CMU
16
Two Non-Interfering Mechanisms
Assume T1/2(76Ge)=22.3x1024 y ACFI-FRIB M. Horoi CMU
17
Is there a more general description?
Long-range terms: (a) - (c ) Short-range terms: (d) ACFI-FRIB M. Horoi CMU
18
Summary of 0vDBD mechanisms
The mass mechanism (a.k.a. light-neutrino exchange) is likely, and the simplest BSM scenario. Low mass sterile neutrino would complicate analysis Right-handed heavy-neutrino exchange is possible, and requires knowledge of half-lives for more isotopes. h- and l- mechanisms are possible, but could be ruled in/out by energy and angular distributions. Left-right symmetric model may be also (un)validated at LHC/colliders. SUSY/R-parity, KK, GUT, etc, scenarios need to be checked, but validated by other means. ACFI-FRIB M. Horoi CMU
19
2v Double Beta Decay (DBD) of 48Ca
The choice of valence space is important! ISR 48Ca 48Ti pf 24.0 12.0 f7 p3 10.3 5.2 Ikeda satisfied in pf ! Horoi, Stoica, Brown, PRC 75, (2007) ACFI-FRIB M. Horoi CMU
20
Double Beta Decay NME for 48Ca
M. Horoi, PRC 87, (2013) ACFI-FRIB M. Horoi CMU
21
Closure Approximation and Beyond in Shell Model
Challenge: there are about 100,000 Jk states in the sum for 48Ca Much more intermediate states for heavier nuclei, such as 76Ge!!! No-closure may need states out of the model space (not considered). Minimal model spaces 82Se : 10M states 130Te : 22M states 76Ge : 150M states ACFI-FRIB M. Horoi CMU
22
82Se: PRC 89, (2014) ACFI-FRIB M. Horoi CMU
23
New Approach to calculate NME: New Tests of Nuclear Structure
Brown, Horoi, Senkov arXiv: , ACFI-FRIB M. Horoi CMU
24
136Xe bb Experimental Results
Publication Experiment T2n1/2 T0n1/2(lim) T0n1/2(Sens) PRL 110, KamLAND-Zen > 1.9x1025 y 1.1x1025 y PRC 89, EXO-200 ( )x1021 y Nature 510, 229 >1.1x1025 y 1.9x1025 y PRC 85, ( )x1021 y EXO-200 arXiv: , Nature 510, 229 ACFI-FRIB M. Horoi CMU
25
136Xe 2nbb Results np - nh 0g7/2 1d5/2 1d3/2 2s5/2 0h11/2 model space
New effective interaction, 0h11/2 2s5/2 1d3/2 1d5/2 0g7/2 0h9/2 0g9/2 0h11/2 2s5/2 1d3/2 1d5/2 0g7/2 0h9/2 0g9/2 0g7/2 1d5/2 1d3/2 2s5/2 0h11/2 model space 0h11/2 2s5/2 1d3/2 1d5/2 0g7/2 0h9/2 0g9/2 0h11/2 2s5/2 1d3/2 1d5/2 0g7/2 0h9/2 0g9/2 0g9/2 0g7/21d5/2 1d3/2 2s5/2 0h11/2 0h9/2 n (0+) n (1+) M(2v) 0.062 1 0.091 0.037 2 0.020 np - nh ACFI-FRIB M. Horoi CMU
26
S. Vigdor talk at LRP Town Meeting, Chicago, Sep 28-29, 2014
ACFI-FRIB M. Horoi CMU
27
IBA-2 J. Barea, J. Kotila, and F. Iachello, Phys. Rev
IBA J. Barea, J. Kotila, and F. Iachello, Phys. Rev. C 87, (2013). QRPA-En M. T. Mustonen and J. Engel, Phys. Rev. C 87, (2013). QRPA-Jy J. Suhonen, O. Civitarese, Phys. NPA –232 (2010). QRPA-Tu A. Faessler, M. Gonzalez, S. Kovalenko, and F. Simkovic, arXiv: ISM-Men J. Menéndez, A. Poves, E. Caurier, F. Nowacki, NPA –151 (2009). SM M. Horoi et. al. PRC 88, (2013), PRC 89, (2014), PRC 90, PRC 89, (2014), in preparation, PRL 110, (2013). ACFI-FRIB M. Horoi CMU
28
IBA-2 J. Barea, J. Kotila, and F. Iachello, Phys. Rev
IBA J. Barea, J. Kotila, and F. Iachello, Phys. Rev. C 87, (2013). QRPA-Tu A. Faessler, M. Gonzalez, S. Kovalenko, and F. Simkovic, arXiv: SM M. Horoi et. al. PRC 88, (2013), PRC 90, PRC 89, (2014), in preparation, PRL 110, (2013). ACFI-FRIB M. Horoi CMU
29
Take-Away Points Observation of 0nbb will signal New Physics Beyond the Standard Model. Black box theorem (all flavors + oscillations) 0nbb observed at some level (i) Neutrinos are Majorana fermions. (ii) Lepton number conservation is violated by 2 units Regardless of the dominant 0nbb mechanism! ACFI-FRIB M. Horoi CMU
30
Take-Away Points The analysis and guidance of the experimental efforts need accurate Nuclear Matrix Elements. ACFI-FRIB M. Horoi CMU
31
Take-Away Points Extracting information about Majorana CP-violation phases may require the mass hierarchy from LBNE, cosmology, etc, but also accurate Nuclear Matrix Elements. ACFI-FRIB M. Horoi CMU
32
Take-Away Points Alternative mechanisms to 0nbb need to be carefully tested: many isotopes, energy and angular correlations. These analyses also require accurate Nuclear Matrix Elements. SuperNEMO; 82Se ACFI-FRIB M. Horoi CMU
33
Take-Away Points Accurate shell model NME for different decay mechanisms were recently calculated. The method provides optimal closure energies for the mass mechanism. Decomposition of the matrix elements can be used for selective quenching of classes of states, and for testing nuclear structure. 76Ge ACFI-FRIB M. Horoi CMU
34
Experimental info needed
ACFI-FRIB M. Horoi CMU
35
Collaborators: Alex Brown, NSCL@MSU Roman Senkov, CMU and CUNY
Andrei Neacsu, CMU Jonathan Engel, UNC Jason Holt, TRIUMF ACFI-FRIB M. Horoi CMU
36
Summary and Outlook Observation of neutrinoless double beta decay would signal physics beyond the Standard Model: massive Majorana neutrinos, right-handed currents, SUSY LNV, etc 48Ca and 136Xe cases suggest that 2 double-beta decay can be described reasonably within the shell model with standard quenching, provided that all spin-orbit partners are included. Higher order effects for 0 NME included: range 1.0 – 1.4 Reliable 0bb nuclear matrix elements could be used to identify the dominant mechanism if energy/angular correlations and data for several isotopes become available. The effects of the quenching and the missing spin-orbit partners are important (see the 136Xe case), and they need to be further investigated for 76Ge, 82Se and 130Te. ACFI-FRIB M. Horoi CMU
37
Effective Field Theory for BSM
V. Cirigliano talk at LPR Town Meeting, Chicago, Sep 28-29, 2014 ACFI-FRIB M. Horoi CMU
38
Effective Field Theory for BSM
M. Hirsch talk at NEUTRINO 2014 ACFI-FRIB M. Horoi CMU
39
Comparisons of M0n 0nbb Results
From T. Rodriguez, G. Martinez-Pinedo, Phys. Rev. Lett. 105, (2010) Present Shell Model results: Phys. Rev. Lett. 110, (2013) PRC 89, & 88, (2013) PRC 89, (2014), submitted (MS) ACFI-FRIB M. Horoi CMU
40
Shell Model GT Quenching
empty valence frozen core core polarization: Phys.Rep. 261, 125 (1995) J. Menendez, D. Gazit and A. Schwenk, arXiV: , PRL 107 ACFI-FRIB M. Horoi CMU
41
The Minimal Standard Model
? ACFI-FRIB M. Horoi CMU
42
The effect of larger model spaces for 48Ca
M(0v) SDPFU SDPFMUP 0.941 0.623 0+2 1.182 (26%) 1.004 (61%) M(0v) / GXPF1A 0.733 nd ord./GXPF1A 1.301 (77%) arXiv: , PRC 89, (2014) SDPFU: PRC 79, (2009) PRC 87, (2013) SDPFMUP: PRC 86, (R) (2012) ACFI-FRIB M. Horoi CMU
43
Other Shell Model Results
0g7/2 1d5/2 1d3/2 2s5/2 0h11/2 valence space ACFI-FRIB M. Horoi CMU
44
S. Vigdor talk at LPR Town Meeting, Chicago, Sep 28-29, 2014
ACFI-FRIB M. Horoi CMU
45
The Black Box Theorem J. Schechter and J.W.F Valle, PRD 25, 2951 (1982) E. Takasugi, PLB 149, 372 (1984) J.F. Nieves, PLB 145, 375 (1984) M. Hirsch, S. Kovalenko, I. Schmidt, PLB 646, 106 (2006) However: M. Duerr et al, JHEP 06 (2011) 91 0nbb observed at some level (i) Neutrinos are Majorana fermions. (ii) Lepton number conservation is violated by 2 units Regardless of the dominant 0nbb mechanism! ACFI-FRIB M. Horoi CMU
46
ACFI-FRIB M. Horoi CMU
47
Neutrino Oscillations
NH IH ACFI-FRIB M. Horoi CMU
48
Low-energy contributions to 0vbb decay
Low-energy effective Hamiltonian ACFI-FRIB M. Horoi CMU
49
Some mechanisms tested at LHC
PRD 86, (2012) Left-right symmetric model arXiv: ACFI-FRIB M. Horoi CMU
50
Some mechanisms tested at LHC
Broken D-parity left-right symmetric model: arXiv: Recent CMS results a 2.8s effect arXiv: ACFI-FRIB M. Horoi CMU
51
Neutrino Oscillations
ACFI-FRIB M. Horoi CMU
52
Consequences of Majorana Neutrinos
- Leptogenesis (DL=2) => (SM sphalerons) => Baryogenesis - Exotic (DL=2) decays: - Larger magnetic moments => Larger decay rates of heavy neutrino - Different neutrino contribution to Supernovae explosion mechanism => different signals measured on Earth detectors ACFI-FRIB M. Horoi CMU
53
Fermion masses in and beyond the Standard Model
Standard Model photon (m=0) Standard Model Dirac fermions (m>0) Standard Model neutrino (m=0) Beyond Standard Model Dirac neutrino (m>0) Beyond Standard Model Majorana neutrino (m>0) ACFI-FRIB M. Horoi CMU
54
Matrix Elements: Light Neutrinos
Present Interacting Shell-Model PRL 109, (2012) PRD 83, (2011) NPA 818, 139 (2009) ACFI-FRIB M. Horoi CMU
55
Matrix Elements: Heavy Neutrinos
Present Interacting Shell-Model PRL 109, (2012) PRD 83, (2011) ACFI-FRIB M. Horoi CMU
56
Fermions masses in the Standard Model
Standard Model photon (m=0) Standard Model Dirac fermions (m>0) Standard Model neutrino (m=0) Extended Standard Model Dirac neutrino (m>0) Beyond Standard Model Majorana neutrino (m>0) ACFI-FRIB M. Horoi CMU
57
Beyond Closure in Shell Model
Challenge: there are about 100,000 Jk states in the sum for 48Ca !!! Senkov & Horoi, PRC 88, (2013) About 300 intermediate states for each spin are (more than) enough GT dominates, and exhibits the largest change A 8-12% increase from closure was found ACFI-FRIB M. Horoi CMU
58
76Ge ACFI-FRIB M. Horoi CMU
59
DBD signals from different mechanisms
ACFI-FRIB M. Horoi CMU
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.