Presentation is loading. Please wait.

Presentation is loading. Please wait.

Spectroscopy of exotic nuclei Reiner Krücken Physik Department E12 Technische Universität München Maier-Leibnitz Laboratory of TU München and LMU München.

Similar presentations


Presentation on theme: "Spectroscopy of exotic nuclei Reiner Krücken Physik Department E12 Technische Universität München Maier-Leibnitz Laboratory of TU München and LMU München."— Presentation transcript:

1 Spectroscopy of exotic nuclei Reiner Krücken Physik Department E12 Technische Universität München Maier-Leibnitz Laboratory of TU München and LMU München for Nuclear-, Particle-, and Accelerator Physics

2 From QCD to atomic nuclei uu d Quarks, Gluons nucleon-nucleon interaction (ab-initio Models) Light nuclei (A  10) ? QCD Protons, Neutrons

3 Ab-initio calculations of light nuclei 7500 CPU hours

4 From QCD to atomic nuclei uu d Quarks, Gluons nucleon-nucleon interaction (ab-initio Models) Light nuclei (A  10) ? ? Heavy nuclei effective nucleon-nucleon interaction (Mean-field theories) QCD Protons, Neutrons

5 Shell structure in nuclei and metal clusters Annu. Rev. Nucl. Part. Sci. 2001, Vol. 51: 219-259. H.O. + L 2 + LS 2 8 20 28 50 82 126 184 198 138 92 58 40 20 8 2 8 2 112 70 40 168 S.G. Frauendorf, C. Guet

6 Central Questions in Nuclear Structure Physics Where are the limits of nuclear stability? How does shell structure change far from stability? What are the phases, relevant degrees of freedom, and symmetries of the nuclear many-body system? Are there new modes of collective excitation? How are the Heavy Elements produced?  Unified theoretical framework with predictive power Diversified experimental strategy to understand the Structure and Dynamics of Exotic Nuclei:  Measure Ground State Properties  Gamma-ray spectroscopy of excited states  Reaction studies

7 r-process and shell structure Nuclear shell structure - Defines r-process path - Imprinted in abundance pattern - maybe modified for exotic nuclei -Fission may fill the holes -Depends on shell structure r - process G. Martinez-Pinedo et al. Pfeiffer et al. element number abundance log(X/H)-12 CS22892-052 (Sneden et al. 2003) solar r

8 Production of radioactive ion beams

9 Isotope Separation On-Line Diffusion from thick target - depends on chemistry - Needs time Fragments move with beam velocity (30-90% c) Reaction induced by light projectile (p,d,n) in thick target Exotic nuclei are produced in thin target as fragment of heavy beam In-flight separation

10 In-flight production of radioactive beams Projectile fragmentation or fission at high energies (50 -1000 AMeV) Both fragments are highly excited ad evaporate nucleons Fig. by T. Glasmacher (NSCL/MSU)

11 B  -  E - B  Separation Method

12 UNILAC SIS FRS ESR 100 m Fragment Identification EE EE TOF

13 FAIR: Facility for Antiproton and Ion Research Primary Beams 10 12 /s; 1.5-2 GeV/u; 238 U 28+ Factor 100-1000 over present in intensity Secondary Beams Broad range of radioactive beams up to 1.5 - 2 GeV/u; up to factor 10 000 in intensity over present Antiprotons 3 - 30 GeV Storage and Cooler Rings Radioactive beams e - - A and Antiproton-A collider 100 m UNILAC SIS 18 SIS 100/300 HESR Super FRS NESR CR RESR GSI today Future Facility ESR

14 1.4 GeV ISOLDE at CERN from PS Booster

15 REX-ISOLDE

16 Modifications of nuclear shell structure

17 Two-neutron separation energies Fig. by R.F. Casten Shell closure

18 The extreme single-particle model Strong Spin-orbit From individual nuclei with NN interaction to mean field with residual interaction

19 N=82 Probing shell closures: Decay Spectroscopy A. Jungclaus et al., PRL 99, 132501 (2007) I. Dillmann, PRL91 (2003) 162503  -decay Q-value (ISOLDE):  130 Cd less bound  Quenching of N=82 shell ?  no shell quenching  information on excited states essential!!

20 SIMBA Implantation Detector in RISING Ch. Hinke, K. Eppinger, K. Steiger

21 Shell modification through softer potential T.R. Werner, J. Dobaczewski, W. Nazarewicz, Z. Phys. A358 (1997) 169 Possible signatures:  new shell gaps (e.g. N=70 in 110 Zr)  reduction of spin-orbit splitting in neutron-rich nuclei  increased neutron skin Pfeiffer et al.

22 Shell modification through residual interaction O. Sorlin, M.G. Porquet, Prog. Part. Nucl. Phys. 2008 24 O doubly magic 32 Mg deformed Effective single particle energies T. Otsuka et al. N=20 Z=8... what is the heaviest bound oxygen isotope???? unbound bound

23 Non-existence of 28 O (Z=8,N=20) H. Sakurai et al., Physics Letters B 448 (1999) 180 RIPS@RIKEN Position x-y  trajectory B   p, A/Z TOF  v  A dE/dx  Z

24 The neutron drip-line Otsuka et al., arXiv:0908.2607v1 [nucl-th] O  F: 1 extra proton can bind 6 more neutrons Is 24 O doubly magic?

25 24 O knock-out experiment at the GSI FRS 48Ca 1A GeV carbon 4.05 g/cm 2 FRS operation in 'dispersion matched mode' → direct momentum measurement at S4 R. Kanungo et al., PRL 102 (2009) 152501 6.347 g/cm 2 Be Excellent agreement with predictions for N=16 shell closure

26 1h 11/2 neutrons 1h 11/2 protons 1g 7/2 protons 11/2 - 7/2 + Reduced spin-orbit or tensor force? T. Otsuka et al., PRL 97 (2006) 162501 T. Otsuka et al., PRL 95 (2005) 232502 j<j< j>j> j’ > j’ < protons neutrons J.P. Schiffer et al., PRL 92 (2004) Z=51 Sb isotopes FRIB

27 Intermediate energy Coulomb excitation Au 40 S Doppler-correction 20-50 MeV/u Possible complications: a) Need to separate EM interaction from nuclear interaction  select small scattering angles  large distance between nuclei b) Possible feeding from higher lying 2+ states T. Glasmacher, Annu. Rev. Nucl. Part. Sci. 1998.48:1-31

28 Collectivity of 32,34 Mg 32 Mg: E(4 + )/E(2 + ) = 2.6 34 Mg: E(4 + )/E(2 + ) = 3.2 Rotor: E(4 + )/E(2 + ) = 10/3 Ar S Si Mg Ne 3836 34 32 30 100 50 0 150 N=20 B(E2; 2 +  0 + ) [e 2 fm 4 ] Without N=20 shell With N=20 shell T. Motobayashi et al. Phys. Lett. B 346 (1995) 9. Secondary fragmentation of 36 Si beam K. Yoneda et al., Phys. Lett. B 499 (2001) 233

29 Transfer reactions (d,p), ( 3 He,d): Stripping of neutron or proton from light ion (p,d), ( 3 He,  ): Pick-up of neutron/proton by light ion Example d + 90 Zr  p + 91 Zr or 90 Zr (d,p) 91 Zr Other examples: (d,p), ( , 3 He)… (p,d), ( 3 He,  )… ( 3 He, d), ( , t)… (d, 3 he), (t,  )…

30 Example – 54 Fe(d,p) 55 Fe Energy (keV) counts 5 keV FWHM 25 MeV deuterons 55 Fe Munich Q3D

31 Transfer set-up T-REX inside MINIBALL V. Bildstein, K. Wimmer T-REX position sensitive silicon detector array: forward barrel (  E-E): 140/1000 μm backward barrel/CD: 500 μm silicon 3 ◦ − 5 ◦ angular resolution energy resolution of 60 keV (backward) to 2 MeV (forward) at 3 MeV/u efficiency of full 4  array: 62%

32 40 3941 32 31 302928 27 262524 23 18 O F Ne 24 4038 37 36 35 3433 544644 43 424048 50 45 4948 47 46 32 Na Mg Al Si P S Cl Ar K Ca ScSc Ti 36 43 44 1931 22212034 47 51 classic shell closures Predicted new shell closures Modification of shell structure Island of inversion deformed g.s.

33 Giant resonances  probe bulk properties of nuclei  symmetry energy  compressibility  effective NN interaction Radioactive beams allow to study isospin dependence of nuclear bulk properties New Phenomenon:  Soft Modes

34 Dipole Excitations of Neutron-Rich Nuclei neutron skin  core vibration LAND collaboration A. Klimkiewicz, PRCL subm. P. Adrich, PRL 95 (2005) 124 Sn 132 Sn Photoabsorption Coulomb excitation 130 Sn P. Ring et al.

35 Symmetry Energy, EOS and Neutron Stars Pygmy strength N. Paar RQRPA Symmetry energy Expansion of energy per nucleon around saturation density  0 a 4 = Symmetry energy in neutron matter (asymmetry parameter)

36 Backup

37 Other in-flight facilities (incomplete) National Coupled Cyclotron Facility Michigan State University Radioactive Ion Beam Factory at RIKEN, Tokyo

38 Other ISOL facilities (incomplete) ISAC at TRIUMF, Vancouver, Canada SPIRAL2 at GANIL, Caen, France HRIBF at ORNL Oak Ridge, USA

39 Single-particle levels in O isotopes Otsuka et al., arXiv:0908.2607v1 [nucl-th] Large gap for N=16  24 O new doubly magic nucleus


Download ppt "Spectroscopy of exotic nuclei Reiner Krücken Physik Department E12 Technische Universität München Maier-Leibnitz Laboratory of TU München and LMU München."

Similar presentations


Ads by Google