Presentation is loading. Please wait.

Presentation is loading. Please wait.

PHYS 571 Gugun Gunardi Heath Kersell Damilola Daramola

Similar presentations


Presentation on theme: "PHYS 571 Gugun Gunardi Heath Kersell Damilola Daramola"— Presentation transcript:

1 PHYS 571 Gugun Gunardi Heath Kersell Damilola Daramola
Gallium Nitride (GaN) PHYS 571 Gugun Gunardi Heath Kersell Damilola Daramola

2 Gallium Nitride (GaN) Introduction Properties Crystal Structure
Bonding Type Application

3 Introduction The next important semiconductor material after silicon.
Can be operated at high temperatures. The key material for the next generation of high frequency and high power transistors. Wide band gap energy.

4 Properties PROPERTY / MATERIAL . Cubic (Beta) GaN .
Hexagonal (Alpha) GaN . Structure Zinc Blende Wurzite Stability Meta-stable Stable Lattice Parameter(s) at 300K 0.450 nm a0 = nm c0 = nm Density at 300K 6.10 g.cm-3 6.095 g.cm-3 Nature of Energy Gap Eg Direct Energy Gap Eg at K x10-4T2 / (T+600) eV         Ching-Hua Su et al, 2002

5 Properties Energy Gap Eg at 300 K
3.23 eV Ramirez-Flores et al eV Logothetidis et al 1994 3.44 eV Monemar eV Koide et al eV Ching-Hua Su et al, 2002 Energy Gap Eg at ca. 0 K 3.30 eV Ramirez-Flores et al1994 Ploog et al 1995 3.50 eV Dingle et al 1971 Monemar 1974

6 Properties Comparison between Common Semiconductor Material Properties and GaN Material Bandgap (eV) Electron Mobility (cm2/Vs) Hole Mobility (cm2/Vs) Critical Field Ec (V/cm) Thermal Conductivity sT (W/m·K) Coefficient of Thermal Expansion (ppm/K) InSb 0.17, D 77,000 850 1,000 18 5.37 InAs 0.354, D 44,000 500 40,000 27 4.52 GaSb 0.726, D 3,000 50,000 32 7.75 InP 1.344, D 5,400 200 500,000 68 4.6 GaAs 1.424, D 8500 400 400,000 55 5.73 GaN 3.44, D 900 10 3,000,000 110 (200 Film) Ge 0.661, I 3,900 1,900 100,000 58 5.9 Si 1.12, I 1,400 450 300,000 130 2.6 GaP 2.26, I 250 150 1,000,000 110 4.65 SiC (3C, b) 2.36, I 10-30 1,300,000 700 2.77 SiC (6H, a) 2.86, I 75 2,400,000 5.12 SiC (4H, a) 3.25, I 3,180,000 C (diamond) , I 2,200 1,800 6,000,000 1,300 0.8

7 Crystal Structure GaN grown in
Wurtzite crystal structure Zinc-blende crystal structure The band gap, Eg, effected by crystal structure

8 Wurtzite Crystal Structure
Wurtzite crystal structure is a member of the hexagonal crystal system The structure is closely related to the structure of hexagonal diamond. Energy gap: 3.4 eV

9 Wurtzite Crystal Structure
An ideal angle: 1090 Nearest neighbor: 19.5 nm Energetically favorable Several other compounds can take the wurtzite structure, including Agl, ZnO, CdS, CdSe, and other semiconductors.

10 Zinc-blende Crystal Structure
Energy gap 3.2 eV An ideal angle: Nearest neighbor: 19.5 nm

11 GaN Bonding Properties
Tetrahedral bonds sp3 hybridization Bonding angle: ° Bond Length: 19.5 nm Ga-N bonds significantly stronger than Ga-Ga interactions (based on distance)

12 Ionicity GaN exhibits mixed ionic-covalent bonding
Ionicity of a bond is the fraction fi of ionic character compared to the fraction of fh of covalent character By Pauling’s definition Modern definition is the ionicity phase angle 1http://

13 GaN Bonding Properties
Based on calculations using both methods, typical values are Compound Pauling ionicity Modern ionicity2 AlN 0.430 0.449 AlP 0.086 0.307 AlAs 0.061 0.274 GaN 0.387 0.500 GaP 0.327 GaAs 0.039 0.310 InN 0.345 0.578 InP 0.421 InAs 0.022 0.357 NaCl 0.668 > 0.9 C (Diamond) Bond Character dependent on electronegativity χN >> χP > χAs > χSb 2J.C. Phillips, Bonds and Bands in Semiconductors 1973

14 GaN Bonding Properties
Bonding strength determines energy gap size Large band gap evidence of strong bonding in GaN Strongly Ionic Compounds (also insulators) LiF – 11eV; NaCl – 8.5eV; KBr – 7.5 eV Other III-V compounds e.g. GaN – 3.2 eV/3.4 eV GaP – 2.3 eV AlSb – 1.5 eV InP – 1.3 eV

15 Applications Gallium Nitride Typical Applications:
New Kind of Nanotube Laser diodes High-resolution Printings Microwave radio-frequency power amplifiers Solar Cells

16 New Kind of Nanotube Single Crystal Nanotubes Fabricated
Gallium Nitride nanotubes have diameter between 30 – 200 nm Potential for mimicking ion channels

17 GaN Laser Diode Normally emit ultraviolet radiation
Indium doping allows variation in band gap size Band gap energies range from 0.7eV – 3.4eV

18 GaN Laser Diodes Applications in: ‘Blu-Ray’ technology Laser Printing

19 GaN Solar Cells Indium doped (InGaN)
Conversion of many wavelengths for energy Theoretical 70% maximum conversion rate. Multiple layers attain higher efficiency. Need many layers to attain 70% Lattice matching not an issue

20 GaN Solar Cells Advantages: Difficulties: High heat capacity
Resistant to effects of strong radiation High efficiency Difficulties: Too many crystal layers create system damaging stress Too expensive

21 References Powder-&-Crystals.html nanotube.html solar-cell.html


Download ppt "PHYS 571 Gugun Gunardi Heath Kersell Damilola Daramola"

Similar presentations


Ads by Google