Download presentation
Presentation is loading. Please wait.
Published bySharlene Dean Modified over 9 years ago
1
Download Lab. Handouts Download Lab. #3 and Print out 3 files:
Quiz #2 Marks posted on Webpage
2
Mendelian Genetics Topics: -Transmission of DNA during cell division
Mitosis and Meiosis - Segregation - Sex linkage (problem: how to get a white-eyed female) - Inheritance and probability - Mendelian genetics in humans - Independent Assortment - Linkage - Gene mapping - 3 point test cross - Tetrad Analysis (mapping in fungi) - Extensions to Mendelian Genetics - Gene mutation - Chromosome mutation - Quantitative and population genetics
3
Linkage Chapter 6 - recombination - linkage maps
Ch. 6 p. 148 – Prob: 1-5, 7, 8, 10, 11, 14
4
Linkage of Genes - Many more genes than chromosomes
- Some genes must be linked on the same chromosome; therefore not independent
5
Independent Assortment
Linkage Fig 6-6 Fig 6-11 Interchromosomal Intrachromosomal
6
Two ways to produce dihybrid
A B a b A b a B cis A B AaBb A b trans a b (dihybrid ) a B Gametes: AB P Ab ab P aB Ab R AB aB R ab P X X
7
Example Test Cross AaBb X aabb ab Exp. Obs. AB AaBb 25 10 R
Ab Aabb P aB aaBb P ab aabb R How to distinguish: Parental high freq. Recombinant low freq.
8
Gametes: AB R Ab P aB P ab R Therefore dihybrid: A b (trans) a B
Example (cont.) Gametes: AB R Ab P aB P ab R Therefore dihybrid: A b (trans) a B
9
Linkage Maps Genes close together on same chromosome:
- smaller chance of crossovers between them - fewer recombinants Therefore: percentage recombination can be used to generate a linkage map
10
A B large # of recomb. a b C D small number of recombinants c d
Linkage maps A B large # of recomb. a b C D small number of recombinants c d
11
Linkage maps example Testcross progeny: P AaBb 2146 R Aabb 43
Total map units 65 = 1.4 % RF 4513 A mu B
12
Additivity of map distances
separate maps A B A C combine maps C A B or Locus A C B (pl. loci)
13
Linkage Deviations from independent assortment Dihybrid gametes
2 parent (noncrossover) common 2 recombinant (crossover) rare % recombinants a function of distance between genes % RF = map distance
14
Gametes Number of Genes Number of Different Gametes
monohybrid 1 (Aa) dihybrid (AaBb) trihybrid (AaBbCc)
15
AaBbCc X aabbcc ABC ABc abc AbC Abc aBC aBc abC abc
Three Point Test Cross Trihybrid AaBbCc X aabbcc ABC ABc abc AbC Abc aBC aBc abC abc 8 gamete types 11
16
C ABC B c ABc A C AbC b c Abc a
Three Point Test Cross Trihybrid Gametes C ABC B c ABc A C AbC b c Abc a 11
17
Three Point Test Cross Trihybrid AaBbCc 3 genes: Possibilities:
1. All unlinked 2. Two linked; one unlinked 3. Three linked - order ? A---B---C B---C---A B---A---C Trihybrid 11
18
Three Point Test Cross +, cv crossveinless +, ct cut wing
Three recessive mutants of Drosophila: , v vermilion eyes +, cv crossveinless +, ct cut wing P +/+ cv/cv ct/ct X v/v +/+ +/+ 11
19
Three Point Test Cross P +/+ cv/cv ct/ct x v/v +/+ +/+
Gametes cv ct v + + F1 trihybrid v/+ cv/+ ct/+ 11
20
Three Point Test Cross F1 v/+ cv/+ ct/+ x v/v cv/cv ct/ct v cv ct
8 gamete types one gamete type 11
21
8 gamete types F1 v/+ cv/+ ct/+ v + + 580 + cv ct 592 v cv + 45
v ct + cv 1448 Parental (most frequent) Recombinant 11
22
8 gamete types F1 v/+ cv/+ ct/+ v + + 580 + cv ct 592 v cv + 45
v ct + cv 1448 Parental Recombinant 268 Recombinant Parental 268 1448 = 18.5 % 11
23
8 gamete types F1 v/+ cv/+ ct/+ v + + 580 + cv ct 592 v cv + 45
v ct + cv 1448 Parental Parental Recombinant 191 Recombinant 191 1448 = 13.2 % 11
24
8 gamete types F1 v/+ cv/+ ct/+ v + + 580 + cv ct 592 v cv + 45
v ct + cv 1448 Parental Recombinant 93 Parental Recombinant 93 1448 = 6.4 % 11
25
Calculate Recombination Fraction
v cv R v cv R 268 / = % v ct R R v ct 191/ = % 3. ct - cv R ct R + cv 93/ = % 11
26
Three point test cross Observations:
all 3 RF < 50 % genes on same chromosome v-----cv largest distance ct in middle map v ct cv = cv ct v = > !! Why ? 12
27
Three Point Test Cross P +/+ ct/ct cv/cv x v/v +/+ +/+
gametes ct cv v F1 trihybrid v ct cv 11
28
Three Point Test Cross Double crossover class rarest: v---cv
P v v P ct cv cv R v ct v R cv cv X X X X 3 13
29
Three Point test cross 1. Double crossovers not counted in v--cv RF
2. Double crossovers generate P types (with respect to v--cv) 3. Double crossovers not detected as recombinants Consequence: underestimate of v----cv map distance Greater distance of genes greater error 14
30
Double recombinant class: (3 + 5) x 2 = 16 268 + 16 = 284
284/1448 = 19.6 NOTE: double crossovers detected because of middle gene (ct) 15
31
Mapping Function Genes close together on chromosome
-RF good estimate of map distance Genes far apart on chromosome - RF underestimates true map distance due to undetected multiple crossovers 17 27
32
Mapping Function m = avg. # crossovers per meiosis
(linear with true map distance) if m = 1 (1 cross over for every meiosis) then 50 % recombinants produced Therefore: map units (mu) = m x 50 17 27
33
Mapping Function Mapping function: - relates RF to true map distance
(better estimate for genes separated by large distances) m = -ln (1 - 2RF) mu = m x 50 Mapping function 17 27
34
Mapping Function m = -ln(1 - 2RF)
35
Mapping Function example
1. RF = 18.5 % m = mu = 23.1 2. RF = 6.4 % m = mu = 6.8 Summary: - short distances: use RF - long distances: use mapping function 17 27
36
Linkage Other Points: 1. No crossing over in male Drosophila
male: AaBb A B gametes AB, ab a b use female dihybrid: AaBb x aabb O O 16 26
37
Linkage 2. Linkage of genes on the X chromosome: AaBb x --Y O O
Male progeny: AB Y Ab Y male progeny direct aB Y measure of female meiotic ab Y products 17 27
38
Fungal Genetics Fungi: important organisms in the ecosystem
- decomposers - pathogens important for humans - food (Biology 4040 – Mycology) 19 29
39
Fun Facts About Fungi
40
Fungi
42
Neurospora crassa (bread mold)
Morphological mutants Biochemical mutants (one gene, one enzyme)
43
Linkage Map Neurospora crassa Linkage group I
44
Fungus Life Cycle vegetative stage haploid +, - mating types
brief diploid stage meiosis n n + spores + meiosis - 2n n - n
45
Gamete Pool Gametes: Products of many meioses all pooled together A B
a b AB AB ab ab AB ab P A B ab ab AB ab Ab AB Gamete P a b AB aB ab ab AB AB pool R a B ab AB AB ab R A b 18 28
46
Tetrad Analysis Some Fungi and algae: 4 products of a single
meiosis can be recovered Advantages: 1. haploid organism - no dominance 2. examine a single meiosis - test cross not needed 3. small, easy to culture 4. Tetrad Analysis - map gene to centromere 19 29
47
Ascus with ascospores 30
48
Tetrad Analysis Types of Tetrads:
1. Unordered - 4 products mixed together 2. Ordered (linear) - 4 products lined up, each haploid nucleus can be traced back through meiosis 3. Octads - mitotic division after meiosis 8 products (2 x 4) 20 31
50
Linear Tetrad Analysis
Life Cycle: + = a+ a a a a + a + + Meiosis + Diploid Haploid + Mating: a x a /+ n n n 4 haploid products
51
Linear Tetrad Analysis
mitosis a a a a + a + + + + + 4 haploid products 8 haploid spores (Octad)
52
Linear Tetrad Analysis
Two types of asci: 1. no crossover----> first division segregation (MI) 2. crossover between gene and centromere-----> second division segregation (MII) 21 33
53
Mapping gene to centromere
First Division a a a a a a + + + + No Crossover + + 22 34
54
First division segregation
meiosis A a
55
Mapping gene to centromere
Second division a a a + a + + a + a + + crossover 22 34
56
Second division segregation
** recombinant
57
1st and 2nd Division segregation
First Division Second division a a a a a a a + a a a + + + + + a + + No Crossover a + + + + Crossover
58
Mapping gene to centromere
a a a a a a a a a a a a Total = 100 MI = 86 MII = 14 I II 23 35
59
Mapping gene to centromere
MI = MII = 14 14/100 = 14 % of meioses showed a crossover ½ of the crossover products recombinant RF = ½ x 14 % = 7 % a 7 m.u. 24 36
60
Unordered Tetrad Analysis
1. still products of a single meiosis 2. can not map gene to centromere 3. linear tetrads can be analyzed as unordered 4. map distance between linked genes a b a b a+ b+ meiosis X a+ b+ n n n 25 37
61
Three kinds of unordered tetrads:
b a b a b+ a b a+ b+ a b+ a b a b+ meiosis a+b+ a+b a+b a+b+ a+b a+b+ 1. Parental Ditype 2. Nonparental Ditype PD NPD T 3. Tetratype 26 38
62
PD a b a+ b+ T NPD a b a b+ a+ b+ a+ b a b+ a+ b
63
Unlinked genes PD = NPD a b + + X a b + + meiosis a + + b a/+, b/+ PD
25 37
64
Unordered Tetrads Unlinked Genes: PD = NPD
NPD----> all products recombinant T > ½ products recombinant PD-----> all parental type PD = 58 RF = ½ T + NPD T = 40 T + NPD + PD NPD = 2 RF = m.u. 27 39
65
Tetrad Analysis Types of Tetrads:
1. Ordered (linear): map gene to centromere 2. Unordered: map genes 20 31
66
Linkage: Summary Recombination: generates variation
(inter and intrachromosomal) Genetic maps: - genes linked on the same chromosome - location of new genes relative to genes already mapped 28 40
67
Linkage: Summary Hunting for genes (Human Diseases)
- genetic markers: DNA variation - co-inheritance with diseases using pedigree information - recombinants used to estimate linkage - MUN Medical Genetics 28 40
68
Linkage vs. Association
Association - test if a disease and a marker allele show correlated occurrence in a population Linkage – test if disease and a marker allele show correlated transmission within a pedigree 4,4 1,1 1,4 2,4 3,4 1,2 Linkage 3,3 1,3 3,4 1,3 3,3 2,3 1,4 2,2 2,4 4,4 Association
69
Genetic linkage in humans
Nail- patella syndrome Rare disease inherited as a dominant
70
Genetic linkage in humans
ABO Blood group marker: Alleles: A, B, O Genotypes: OO, AO, BO, AB Two Genes: N-P syndrome; Blood Group Evidence for linkage
71
Genetic linkage in humans
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.