Presentation is loading. Please wait.

Presentation is loading. Please wait.

Dr. Sylvia Oliver PLTW Biomedical Science Affiliate Director WSU Spokane

Similar presentations


Presentation on theme: "Dr. Sylvia Oliver PLTW Biomedical Science Affiliate Director WSU Spokane"— Presentation transcript:

1 Dr. Sylvia Oliver PLTW Biomedical Science Affiliate Director WSU Spokane olivers@wsu.edu

2 PLTW: 21st Century Model for Education  Students can see the relevance of what they are learning— academics made real.  Students are prepared for both college and career— in whatever order they choose, in whatever combination.  Students gain the knowledge and skills in order to compete in the 21 st Century global economy—both academic and technical.

3 Approximately 5,000 programs over 400,000 students more than 10,500 teachers trained 100s of partners

4 Increased Engagement in School More Interested in Math and Science Closed the Achievement Gap Increased College Enrollment, Persistence and Performance Program Benefits

5 Students Learn to: Communicate effectively, both orally and in writing think critically practice professional conduct work effectively in teams design experiments understand the interdisciplinary nature of science, healthcare, mathematics and English language arts.

6 BIOMEDICAL SCIENCES PROGRAM The PLTW Biomedical Sciences Curriculum Engages and Prepares Students for Careers in Medicine, Healthcare and Science.

7 Experience a PLTW Classroom Where students learn content in context through: Case-based scenarios Hands-on learning Activities, project and problems Real world application Open-ended problems

8 Teacher as facilitator -- Student as director of learning …and the classroom becomes a collaboration space. PLTW Classrooms: Launch critical thinking Challenge students to make mistakes Integrate technology into the classroom Encourage teachers and students to learn together.

9 Biomedical Science Program Principles of the Biomedical Sciences Human Body Systems Medical Interventions Biomedical Innovation/Capstone Course

10 Biomedical Careers Physician Nurse Dentist Veterinarian Pharmacist Paramedic Dietician Surgeon Research Scientist Health Information Manager Medical Technologist Medical Technical Writer Physician Assistant Biomedical Engineer Pharmaceutical Manufacturing Engineer

11 Course #1: Principles of the Biomedical Sciences  Students investigate human body systems through disease conditions including: heart disease, diabetes, cancer and infectious diseases.

12 PBS Topics:  Literary research skills  Human body systems  Basic chemistry  Structure and function of DNA  Protein structure  Bioinformatics  Causes of infectious diseases

13 PBS – Units Unit 1 – Human Body Systems Unit 2 – Heart Attack Unit 3 – Diabetes Unit 4 – Sickle Cell Disease Unit 5 – Hypercholesterolemia Unit 6 – Infectious Diseases Unit 7 – Medical Interventions

14 Unit 3: Diabetes Analyze food labels Measure energy in food samples Detect macromolecules in food samples Build model of an enzyme Perform dialysis experiment Prepare presentation on diabetes

15 Unit 4: Sickle Cell Disease Make chromosome spreads Isolate DNA from cells Build models of DNA and proteins Read a genetic map Use computer simulation software to build a designer protein

16 PBS Activity Students learn about chromosomes and DNA by making a chromosome spread using HeLa cells.

17 Course #2: Human Body Systems  Students study basic human anatomy and physiology, especially in relationship to human health.  Students use data acquisition software to monitor body functions and use the Anatomy in Clay ® Manikens ® to study body structure.

18  Relationship between structure and function  Maintenance of health  Defense against disease  Communication within the body and with the outside world  Movement of the body and of substances around the body  Energy distribution and processing HBS Topics:

19 HBS – Units Unit 1 – Identity Unit 2 – Communication Unit 3 – Power Unit 4 – Movement Unit 5 – Protection Unit 6 - Homeostasis

20 Unit 2: Communication Build a model brain and design a “map” of brain function Use data acquisition software and sensors to compare reaction time for reflex and voluntary actions Diagnose a mystery endocrine disorder Dissect a cow eye and experiment with lenses

21 Unit 4: Movement Build muscle groups on a skeletal Anatomy in Clay Maniken Design experiments to determine the energy requirements for muscle contraction Use data acquisition software to evaluate muscle function Measure pulses to monitor blood flow Design a training plan for an athlete

22 HBS Activity Students use Manikens from Anatomy in Clay

23 Course #3: Medical Interventions  Students learn to diagnose and treat diseases using surgery, bio-nanotechnology, pharmacology, prosthetics, rehabilitation, and lifestyle choices. Student projects investigate interventions related to diagnostics, immunology, surgery, genetics, pharmacology, medical devices, and lifestyle choices.

24  Molecular biology and genetic engineering  Design process for pharmaceuticals and medical devices  Medical imaging, including x-rays, CT scans, and MRI scans  Disease detection and prevention  Rehabilitation after disease or injury MI Topics:

25 Medical Interventions

26 MI – Units Unit 1 – How to Fight Infection Unit 2 – How to Screen What is in Your Genes Unit 3 – How to Conquer Cancer Unit 4 – How to Prevail When Organs Fail

27 Unit 1: How to Fight Infection Identify pathogens using bioinformatics Run simulated ELISA to diagnose disease Transfer antibiotic resistance from one bacterial strain to another Assess hearing loss and evaluate assisted hearing devices Investigate production of vaccines

28 Unit 3: How to Conquer Cancer Explore cancer diagnostic techniques Evaluate cancer cell genes using simulated DNA microarrays Use data acquisition software and sensors to monitor biofeedback Build a prosthetic arm Design a clinical trial for a nanotechnology-based cancer treatment

29 MI Activities Students insert DNA that codes for a fluorescent protein into bacterial cells. Students work with a laparoscopic surgery trainer box simulation.

30 Biomedical Innovation Capstone Class Students design innovative solutions for the health challenges of the 21st century as they work through progressively challenging open- ended problems.

31 Course 4: Biomedical Innovation Flexible design Apply knowledge and skills learned in previous courses Multiple presentations to adult audiences Design innovative solutions for the health challenges of the 21st century Opportunity to work with mentor(s)

32 Biomedical Innovation Problems: design a more efficient emergency room. design a medical intervention to aid patients design a solution to a local or global public health challenge complete an independent problem

33 Dr. Sylvia Oliver PLTW Biomedical Science Affiliate Director WSU Spokane olivers@wsu.edu

34 Curriculum Structure 34

35 35 Curriculum Structure  Title Page  Acknowledgements  Introduction  Course Description  Teacher Guidelines  Units with Lessons  Glossary Example from the PLTW™ PBS curriculum

36 Teacher Guidelines (resources)  Website Master List  Teacher Notes  Student Resource Documents  Generic Assessment  Rubrics  Answer Keys or Samples  National Standards 36 Example from the PLTW™ PBS curriculum

37 37 Units with Lessons Example from the PLTW™ HBS curriculum Unit folders contain the lessons.

38 PLTW OUTCOMES SUMMARY REVIEW

39 Wheaton HS, Maryland Bioscience Academy 2006: 3 of 13 non-PLTW Bioscience Academy students passed AP Biology. 2007: 24 PLTW students in Academy. 2010: 228 PLTW students. 20 of 38 students who took the AP Biology exams passed. 2010: More PLTW students passed the Biology Assessment exam (41%) than non- PLTW students (16%).

40 Rochester Institute of Technology 378 former PLTW students 91.9% Retention (first year) 81.3% Retention (fourth year) Average PLTW GPA is 0.10 higher (past 3 years) San Diego State University 12 former PLTW students 100% Retention Marquette University 62 former PLTW students 97% Retention (first year) PLTW Alumni Data

41 PLTW OUTCOMES College Credit

42 Current College Credit Options for Biomedical Sciences  Stevenson University  Missouri University of Science and Technology  Indiana University – Purdue University Indianapolis

43 Steps to Implementation

44 Attend an informational session Signing contract with PLTW Teacher selection and Core Training Implementing program in school Certification Process and Articulation Steps to Implementation

45 Attend an informational session Signing contract with PLTW Teacher selection and Core Training Implementing program in school Certification Process and Articulation Steps to Implementation

46 Attend an informational session Signing contract with PLTW Teacher selection and Core Training Implementing program in school Certification Process and Articulation Steps to Implementation

47 Signing Contract with PLTW Determine which programs and courses to offer Complete online New Program Registration – Select School District Delegate Review STEM Agreement – Budget – Course Scheduling – District, school and teacher impacts

48 Average Costs to Implement BMS Assumptions: School has computers, basic lab supplies; costs are for one section of 24 students. Principles of the Biomedical Sciences: – Annual participation fee$ 2,000 – Annual consumables$ 400 – Equipment/supplies$15,500 (one time fee) – Teacher training$ 4,000 (one time fee)

49 Average Costs to Implement BMS Human Body Systems: – Annual participation fee none – Annual consumables$ 1,200 – Equipment/supplies$ 9,000 (one time fee) – Teacher training$ 4,000 (one time fee)

50 Average Costs to Implement BMS Medical Intervention: – Annual participation fee none – Annual consumables$ 1,200 – Equipment/supplies$ 3,500 (one time fee) – Teacher training$ 4,000 (one time fee)

51 Average Costs to Implement BMS Biomedical Innovation: – Annual participation fee none – Annual consumables$ 600 – Equipment/supplies$ 300 (one time fee) – Teacher training$ 4,000 (one time fee)

52 Attend an informational session Signing contract with PLTW Teacher selection and Core Training Implementing program in school Certification Process and Articulation Steps to Implementation

53 Teacher Selection and Training ▪ One year college biology highly recommended for BMS. ▪ Complete online registration for Core Training Institute. ▪ Complete Readiness Training. ▪ Attend two-week summer Core Training Institute. ▪ WSU Spokane will offer PBS, HBS, MI and BI training during summer 2014.

54 Attend an informational session Signing contract with PLTW Teacher selection and Core Training Implementing program in school Certification Process and Articulation Steps to Implementation

55 Implementing School Program ▪ Spring 2014: Review the online purchasing manual. --Determine what is available and what is needed. --Determine consumables for all sections. Confirm course scheduling and credits. Recruit 8 th grade students. Get parent buy-in. Recruitment materials available through PLTW. ▪ Attend two-week summer Core Training Institute.

56 Attend an informational session Signing contract with PLTW Teacher selection and Core Training Implementing program in school Certification Process and Articulation Steps to Implementation

57 National PLTW Certification ▪ Schools can start certification process after two years School and program evaluation procedure PLTW directed Site Visits Benefits: National Recognition Teachers eligible to become Master Teachers Opportunity for students to apply for college credit and scholarships Increased potential for grant funding to support PLTW

58 For More Information: Sylvia Oliver, PhD PLTW Biomedical Sciences Affiliate Director WSU Spokane, olivers@wsu.edu Project Lead The Way Website www.pltw.org


Download ppt "Dr. Sylvia Oliver PLTW Biomedical Science Affiliate Director WSU Spokane"

Similar presentations


Ads by Google