Download presentation
Presentation is loading. Please wait.
Published byGillian Newton Modified over 9 years ago
1
Techniques of Molecular Biology
2
Basic molecular biology techniques Isolating nucleic acids Cutting DNA into fragments Ligating DNA fragments Amplifying DNA fragments Hybridization techniques Genomics Sequencing genomes Analyzing genome sequences Proteomics Separating proteins Analyzing proteins
3
Basic molecular biology techniques Isolating nucleic acids
4
Basic molecular biology techniques Isolating nucleic acids Cutting DNA into fragments
5
DNA can be reproducibly split into fragments by restriction endonucleases
6
DNA fragments can be separated by size in agarose or polyacrylamide gels Because of the phosphates in the sugar phosphate backbone, nucleic acids are negatively charged. In an electric field nucleic acids will move towards the positive pole. Smaller fragments move faster than larger fragments through the pores of a gel.
7
Basic molecular biology techniques Isolating nucleic acids Cutting DNA into fragments Ligating DNA fragments
8
Basic molecular biology techniques Isolating nucleic acids Cutting DNA into fragments Ligating DNA fragments Amplifying DNA fragments DNA can be amplified by Cloning PCR
9
DNA cloning and construction of DNA libraries Cloning in a plasmid vectorGenomic librarycDNA library
10
Vectors for DNA cloning
11
Basic molecular biology techniques Isolating nucleic acids Cutting DNA into fragments Ligating DNA fragments Amplifying DNA fragments DNA can be amplified by Cloning PCR
12
The polymerase chain reaction (PCR)
13
DNA polymerases dATP dTTP dGTP dCTP
14
DNA polymerases
15
Basic molecular biology techniques Isolating nucleic acids Cutting DNA into fragments Ligating DNA fragments Amplifying DNA fragments Hybridization techniques
16
Single-stranded nucleic acids can bind to each other by base pairing if they contain complementary sequences Using a single-stranded labeled probe complementary base pairing is able to detect specific nucleic acids among many different nucleic acids. If the probe is used to detect DNA, the analysis is called DNA blot (Southern) analysis. If an RNA fragment is detected, the analysis is called RNA blot (northern) analysis.
17
Transcriptome analysis using microarrays
18
Basic molecular biology techniques Isolating nucleic acids Cutting DNA into fragments Ligating DNA fragments Amplifying DNA fragments Hybridization techniques Genomics Sequencing genomes
19
Sequencing techniques dideoxysequencing pyrosequencing dATP dTTP dGTP dCTP Genomic library denature (make single-stranded) anneal primer extend primer to copy one of the strands
20
Sequencing techniques dideoxysequencing pyrosequencing
21
Sequencing techniques dideoxysequencing
22
Sequencing techniques dideoxysequencing ≈ 800 nucleotides can be sequenced in one run polyacrylamide gel electrophoresis
23
Sequencing techniques dideoxysequencing pyrosequencing ≈ 200 nucleotides can be sequenced in one run
24
Next generation sequencing methods https://en.wikipedia.org/wiki/DNA_sequencing
25
Genomics Sequencing genomes (assembling the sequence)
26
Genomics Sequencing genomes (assembling the sequence)
27
Genomics Sequencing genomes (assembling the sequence)
28
Genomics Sequencing genomes Analyzing genome sequences
29
Genomics Sequencing of genomes Split genome into pieces and sequence all pieces. Assembling the sequence (computer). Sequence analysis (annotation 1) Identify genes and other elements in sequence. Functional analysis (annotation 2) Determine function of identified elements.
30
How to find genes in a genome sequence Protein-coding genes Find open reading frames (protein-coding sequences) Find sequence with a codon bias Find upstream regulatory sequences (e.g. CpG islands) Find exon-intron boundaries Genes coding for functional RNAs Find consensus sequences for tRNAs and ribosomal RNAs Find specific RNA secondary structures (e.g. stem loops) Find upstream regulatory sequences
31
Genomic sequence
32
Finding open reading frames
33
gagtccagttgaaaagcaactggaatccccttatagataaattaatatctattttaaaattgaatagtttttattctagtttcgttttaagattaataaaattatgtctaaccaagtattta ctactttacgcgcagcaacattagctgttattttaggtatggctggtggcttagcagtaagtccagctcaagcttaccctgtatttgcacaacaaaactacgctaacccacgtga ggctaatggtcgtattgtatgtgcaaactgtcacttagcgcaaaaagcagttgaaatcgaagtaccacaagctgttttacctgatactgtttttgaagctgttattgaacttccata cgataaacaagttaaacaagttttagctaatggtaaaaaaggtgacttaaacgttggtatggttttaattttaccagaaggttttgaattagcaccaccagatcgcgttccggca gaaattaaagaaaaagttggtaacctttactaccaaccatacagtccagaacaaaaaaatattttagttgttggtccagttccaggtaaaaaatacagtgaaatggtagtacc tattttatctccagatcctgctaaaaataaaaacgtttcttacttaaaatatcctatttattttggtggtaatcgtggtcgtggtcaagtatatccagatggtaaaaaatcaaacaaca ctatttacaacgcatcagcagctggtaaaattgtagcaatcacagctctttctgagaaaaaaggtggttttgaagtttcaattgaaaaagcaaacggtgaagttgttgtagaca aaatcccagcaggtcctgatttaattgttaaagaaggtcaaactgtacaagcagatcaaccattaacaaacaaccctaacgttggtggtttcggtcaggctgaaactgaaatt gtattacaaaaccctgctcgtattcaaggtttattagtattcttcagttttgttttacttactcaagttttattagttcttaagaaaaaacaattcgaaaaagttcaattagcagaaatga acttctaatatttaattttttgtagggctgctgtgcagctcctacaaattttagtatgttatttttaaagtttgatatactgaaaacaaagttctacttgaacgatatttagcttttaatgcTA TAATATagcggactaagccgttggcaatttagctgccaattaattttattcgaaggatgtaaacctgctaacgatatttatatataagcattttaatactccgagggaggcctct aacctttagcaagtaagtaaacttccccttcggggcagcaaggcagcagatttaaattctccaaaggaggcagttgatatcagtaaaccccttcgatgactctggcattgatg caaagcatggggaaactaaagttcctccactgcctccttccccttccctttcgggacgtccccttccccttacgggcaagtaaacttagggattttaatgcaataaataaatttgt ccccttacgggacgtcagtggcagttgcgaagtattaatattgtatataaatatagaatgtttacatactccgaaggaggacgtcagtggcagtggtaccgccactgctatttta atactccgaaggagcagtggtggtcccactgccactaaaatttatttgcccgaagacgtcctgccaactgccgaggcaaatgaattttagtggacgtcccttacgggacgtc agtggcagttgcctgccaactgcctccttccccttcgggcaagtaaacttgggagtattaacataggcagtggcggtaccacaataaattaatttgtcctccttccccttcgggc aagtaaacttaggagtatgtaaacattctatatttatatactcccatgctttgccccttaagggacaataaataaatttgtccccttcgggcaaataaatcttagtggcagttgcaa aatattaatatcgtatataaatttggagtatataaataaatttggagtatataaatataggatgttaatactgcggagcagcagtggtggtaccactgccactaaaatttatttgcc cgaaggggacgtcctgccaactgccgatatttatatattccctaagtttacttgccccatatttatatattcctaagtttacttgccccatatttatattaggacgtccccttcgggt Expasy server Finding open reading frames
34
Sequence from the E. coli genome
35
The E. coli genome
36
5’ UTR3’ UTR coding region = open reading frames Translation start Translation stop 5’ -- 3’ protein-coding gene = DNA transcribed into mRNA Protein-coding genes Genes = all DNA sequences that are transcribed into RNA UTR = untranslated region
37
Figure 5.4 Genomes 3 (© Garland Science 2007) Exons and introns in eukaryotic genes 5’ UTR3’ UTR
38
How to find genes in a genome sequence Protein-coding genes Find open reading frames (protein-coding sequences) Find sequence with a codon bias Find upstream regulatory sequences (e.g. CpG islands) Find exon-intron boundaries Genes coding for functional RNAs Find consensus sequences for tRNAs and ribosomal RNAs Find specific RNA secondary structures (e.g. stem loops) Find upstream regulatory sequences
39
Figure 5.6b Genomes 3 (© Garland Science 2007)
40
Figure 5.10 Genomes 3 (© Garland Science 2007) A typical sequence annotation result
41
Verifying the identity of a gene Homology search Experimental techniques Northern hybridization Zoo-blotting
42
Verifying the identity of a gene Homology search MSNQVFTTLR AATLAVILGM AGGLAVSPAQ AYPVFAQQNY ANPREANGRI VCANCHLAQK AVEIEVPQAV LPDTVFEAVI ELPYDKQVKQ VLANGKKGDL NVGMVLILPE GFELAPPDRV PAEIKEKVGN LYYQPYSPEQ KNILVVGPVP GKKYSEMVVP ILSPDPAKNK NVSYLKYPIY FGGNRGRGQV YPDGKKSNNT IYNASAAGKI VAITALSEKK GGFEVSIEKA NGEVVVDKIP AGPDLIVKEG QTVQADQPLT NNPNVGGFGQ AETEIVLQNP ARIQGLLVFF SFVLLTQVLL VLKKKQFEKV QLAEMNF BLAST BLAST = Basic Local Alignment Search Tool
43
Figure 5.28 Genomes 3 (© Garland Science 2007) 6274 ORFsCase study, yeast genome
44
Finding the function of a gene (product) Computer based analysis Homology search Experimental analysis Gene inactivation Overexpression
45
Whole genome studies Tiling assays
46
Working with proteins Separating proteins Analyzing proteins and their interactions
47
Separating proteins on polyacrylamide gels
48
Immunoblot (Western blot)
49
Proteins can be sequenced
50
Complex mixtures of proteins can be analyzed by mass spectrometry
51
Liquid chromatography is used to separate peptides before mass spectrometry
52
Mass spectrum
53
Mass spectra are compared to theoretical values
54
Figure 6.11 Genomes 3 (© Garland Science 2007) Mouse liver proteins
55
Figure 6.20a Genomes 3 (© Garland Science 2007) Protein interaction map of yeast
56
Nucleic acid protein interactions Electrophoretic mobility shift assay (EMSA)
57
Nuclease protection footprinting
58
In vitro selection assay
59
Chromatin immuno- precipitation (ChIP)
60
Chromosome conformation capture (3C assay)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.