Download presentation
Presentation is loading. Please wait.
Published byNoreen Harrell Modified over 9 years ago
1
5.1 Perpendiculars and Bisectors Geometry Mrs. Spitz Fall 2004
2
Objectives: Use properties of perpendicular bisectors Use properties of angle bisectors to identify equal distances.
3
Theorem 5.2 Perpendicular Bisector Theorem If a point is on the perpendicular bisector of a segment, then it is equidistant from the endpoints of the segment. If CP is the perpendicular bisector of AB, then CA = CB.
4
Theorem 5.3: Converse of the Perpendicular Bisector Theorem If a point is equidistant from the endpoints of a segment, then it is on the perpendicular bisector of the segment. If DA = DB, then D lies on the perpendicular bisector of AB.
5
Assignment page 267-268 #1-25 All
6
Statements: 1.CP is perpendicular bisector of AB. 2.CP AB 3.AP ≅ BP 4. CP ≅ CP 5. CPB ≅ CPA 6.∆APC ≅ ∆BPC 7.CA ≅ CB Reasons: 1.Given Given: CP is perpendicular to AB. Prove: CA ≅CB
7
Statements: 1.CP is perpendicular bisector of AB. 2.CP AB 3.AP ≅ BP 4. CP ≅ CP 5. CPB ≅ CPA 6.∆APC ≅ ∆BPC 7.CA ≅ CB Reasons: 1.Given 2.Definition of Perpendicular bisector Given: CP is perpendicular to AB. Prove: CA ≅CB
8
Statements: 1.CP is perpendicular bisector of AB. 2.CP AB 3.AP ≅ BP 4. CP ≅ CP 5. CPB ≅ CPA 6.∆APC ≅ ∆BPC 7.CA ≅ CB Reasons: 1.Given 2.Definition of Perpendicular bisector 3.Given Given: CP is perpendicular to AB. Prove: CA ≅CB
9
Statements: 1.CP is perpendicular bisector of AB. 2.CP AB 3.AP ≅ BP 4. CP ≅ CP 5. CPB ≅ CPA 6.∆APC ≅ ∆BPC 7.CA ≅ CB Reasons: 1.Given 2.Definition of Perpendicular bisector 3.Given 4.Reflexive Prop. Congruence. Given: CP is perpendicular to AB. Prove: CA ≅CB
10
Statements: 1.CP is perpendicular bisector of AB. 2.CP AB 3.AP ≅ BP 4. CP ≅ CP 5. CPB ≅ CPA 6.∆APC ≅ ∆BPC 7.CA ≅ CB Reasons: 1.Given 2.Definition of Perpendicular bisector 3.Given 4.Reflexive Prop. Congruence. 5.Definition right angle Given: CP is perpendicular to AB. Prove: CA ≅CB
11
Statements: 1.CP is perpendicular bisector of AB. 2.CP AB 3.AP ≅ BP 4. CP ≅ CP 5. CPB ≅ CPA 6.∆APC ≅ ∆BPC 7.CA ≅ CB Reasons: 1.Given 2.Definition of Perpendicular bisector 3.Given 4.Reflexive Prop. Congruence. 5.Definition right angle 6.SAS Congruence Given: CP is perpendicular to AB. Prove: CA ≅CB
12
Statements: 1.CP is perpendicular bisector of AB. 2.CP AB 3.AP ≅ BP 4. CP ≅ CP 5. CPB ≅ CPA 6.∆APC ≅ ∆BPC 7.CA ≅ CB Reasons: 1.Given 2.Definition of Perpendicular bisector 3.Given 4.Reflexive Prop. Congruence. 5.Definition right angle 6.SAS Congruence 7.CPCTC Given: CP is perpendicular to AB. Prove: CA ≅CB
13
Theorem 5.4 Angle Bisector Theorem If a point is on the bisector of an angle, then it is equidistant from the two sides of the angle. If m BAD = m CAD, then DB = DC
14
Theorem 5.4 Angle Bisector Theorem If a point is in the interior of an angle and is equidistant from the sides of the angle, then it lies on the bisector of the angle. If DB = DC, then m BAD = m CAD.
15
SOLUTION:
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.