Presentation is loading. Please wait.

Presentation is loading. Please wait.

Proof of Theorem 4.8 – The Base Angles Theorem Given: WX  WY ZW bisects XY Prove:  X   Y StatementsReasons S WX  WY Given.

Similar presentations


Presentation on theme: "Proof of Theorem 4.8 – The Base Angles Theorem Given: WX  WY ZW bisects XY Prove:  X   Y StatementsReasons S WX  WY Given."— Presentation transcript:

1 Proof of Theorem 4.8 – The Base Angles Theorem Given: WX  WY ZW bisects XY Prove:  X   Y StatementsReasons S WX  WY Given

2 Proof of Theorem 4.8 – The Base Angles Theorem Given: WX  WY ZW bisects XY Prove:  X   Y StatementsReasons S WX  WY Given

3 Proof of Theorem 4.8 – The Base Angles Theorem Given: WX  WY ZW bisects XY Prove:  X   Y StatementsReasons S WX  WY Given ZW Bisects XY Given

4 Proof of Theorem 4.8 – The Base Angles Theorem Given: WX  WY ZW bisects XY Prove:  X   Y StatementsReasons S WX  WY Given ZW Bisects XY Given XZ  ZY

5 Proof of Theorem 4.8 – The Base Angles Theorem Given: WX  WY ZW bisects XY Prove:  X   Y StatementsReasons S WX  WY Given ZW Bisects XY Given XZ  ZY Definition of Segment Bisector

6 Proof of Theorem 4.8 – The Base Angles Theorem Given: WX  WY ZW bisects XY Prove:  X   Y StatementsReasons S WX  WY Given ZW Bisects XY Given S XZ  ZY Definition of Segment Bisector

7 Proof of Theorem 4.8 – The Base Angles Theorem Given: WX  WY ZW bisects XY Prove:  X   Y StatementsReasons S WX  WY Given ZW Bisects XY Given S XZ  ZY Definition of Segment Bisector WZ  WZ

8 Proof of Theorem 4.8 – The Base Angles Theorem Given: WX  WY ZW bisects XY Prove:  X   Y StatementsReasons S WX  WY Given ZW Bisects XY Given S XZ  ZY Definition of Segment Bisector S WZ  WZ Reflexive P of C

9 Proof of Theorem 4.8 – The Base Angles Theorem Given: WX  WY ZW bisects XY Prove:  X   Y StatementsReasons S WX  WY Given ZW Bisects XY Given S XZ  ZY Definition of Segment Bisector S WZ  WZ Reflexive P of C  WXZ   YXZ

10 Proof of Theorem 4.8 – The Base Angles Theorem Given: WX  WY ZW bisects XY Prove:  X   Y StatementsReasons S WX  WY Given ZW Bisects XY Given S XZ  ZY Definition of Segment Bisector S WZ  WZ Reflexive P of C  WXZ   YXZ SSS

11 Proof of Theorem 4.8 – The Base Angles Theorem Given: WX  WY ZW bisects XY Prove:  X   Y StatementsReasons S WX  WY Given ZW Bisects XY Given S XZ  ZY Definition of Segment Bisector S WZ  WZ Reflexive P of C  WXZ   YXZ SSS  X   Y

12 Proof of Theorem 4.8 – The Base Angles Theorem Given: WX  WY ZW bisects XY Prove:  X   Y StatementsReasons S WX  WY Given ZW Bisects XY Given S XZ  ZY Definition of Segment Bisector S WZ  WZ Reflexive P of C  WXZ   YXZ SSS  X   Y CPCTC

13 Given: BD  AC BC  AB Prove: BD Bisects  ABC StatementsReasons BD  AC Given

14 Given: BD  AC BC  AB Prove: BD Bisects  ABC StatementsReasons BD  AC Given  ABD,  CDB are right angles

15 Given: BD  AC BC  AB Prove: BD Bisects  ABC StatementsReasons BD  AC Given  ABD,  CDB are right angles Definition of Perpendicular Lines

16 Given: BD  AC BC  AB Prove: BD Bisects  ABC StatementsReasons BD  AC Given  ABD,  CDB are right angles Definition of Perpendicular Lines  BDA,  BDC are right  ’s

17 Given: BD  AC BC  AB Prove: BD Bisects  ABC StatementsReasons BD  AC Given  ABD,  CDB are right angles Definition of Perpendicular Lines  BDA,  BDC are right  ’s Definition of Right Triangle

18 Given: BD  AC BC  AB Prove: BD Bisects  ABC StatementsReasons BD  AC Given  ABD,  CDB are right angles Definition of Perpendicular Lines  BDA,  BDC are right  ’s Definition of Right Triangle BC  AB

19 Given: BD  AC BC  AB Prove: BD Bisects  ABC StatementsReasons BD  AC Given  ABD,  CDB are right angles Definition of Perpendicular Lines  BDA,  BDC are right  ’s Definition of Right Triangle S BC  AB Given

20 Given: BD  AC BC  AB Prove: BD Bisects  ABC StatementsReasons BD  AC Given  ABD,  CDB are right angles Definition of Perpendicular Lines  BDA,  BDC are right  ’s Definition of Right Triangle S BC  AB Given BD  BD

21 Given: BD  AC BC  AB Prove: BD Bisects  ABC StatementsReasons BD  AC Given  ABD,  CDB are right angles Definition of Perpendicular Lines  BDA,  BDC are right  ’s Definition of Right Triangle S BC  AB Given BD  BD Reflexive P of C

22 Given: BD  AC BC  AB Prove: BD Bisects  ABC StatementsReasons BD  AC Given  ABD,  CDB are right angles Definition of Perpendicular Lines  BDA,  BDC are right  ’s Definition of Right Triangle S BC  AB Given S BD  BD Reflexive P of C

23 Given: BD  AC BC  AB Prove: BD Bisects  ABC StatementsReasons BD  AC Given  ABD,  CDB are right angles Definition of Perpendicular Lines  BDA,  BDC are right  ’s Definition of Right Triangle S BC  AB Given S BD  BD Reflexive P of C

24 Given: BD  AC BC  AB Prove: BD Bisects  ABC StatementsReasons BD  AC Given  ABD,  CDB are right angles Definition of Perpendicular Lines  BDA,  BDC are right  ’s Definition of Right Triangle S BC  AB Given S BD  BD Reflexive P of C  BDA   BDC

25 Given: BD  AC BC  AB Prove: BD Bisects  ABC StatementsReasons BD  AC Given  ABD,  CDB are right angles Definition of Perpendicular Lines  BDA,  BDC are right  ’s Definition of Right Triangle S BC  AB Given S BD  BD Reflexive P of C  BDA   BDC HL

26 Given: BD  AC BC  AB Prove: BD Bisects  ABC StatementsReasons BD  AC Given  ABD,  CDB are right angles Definition of Perpendicular Lines  BDA,  BDC are right  ’s Definition of Right Triangle S BC  AB Given S BD  BD Reflexive P of C  BDA   BDC HL  ABD   CBD

27 Given: BD  AC BC  AB Prove: BD Bisects  ABC StatementsReasons BD  AC Given  ABD,  CDB are right angles Definition of Perpendicular Lines  BDA,  BDC are right  ’s Definition of Right Triangle S BC  AB Given S BD  BD Reflexive P of C  BDA   BDC HL  ABD   CBD CPCTC

28 Given: BD  AC BC  AB Prove: BD Bisects  ABC StatementsReasons BD  AC Given  ABD,  CDB are right angles Definition of Perpendicular Lines  BDA,  BDC are right  ’s Definition of Right Triangle S BC  AB Given S BD  BD Reflexive P of C  BDA   BDC HL  ABD   CBD CPCTC BD Bisects  ABC

29 Given: BD  AC BC  AB Prove: BD Bisects  ABC StatementsReasons BD  AC Given  ABD,  CDB are right angles Definition of Perpendicular Lines  BDA,  BDC are right  ’s Definition of Right Triangle S BC  AB Given S BD  BD Reflexive P of C  BDA   BDC HL  ABD   CBD CPCTC BD Bisects  ABC Def of Angle Bisector


Download ppt "Proof of Theorem 4.8 – The Base Angles Theorem Given: WX  WY ZW bisects XY Prove:  X   Y StatementsReasons S WX  WY Given."

Similar presentations


Ads by Google