Presentation is loading. Please wait.

Presentation is loading. Please wait.

LNGS, ITALY Stefan Schoenert, MPIK Heidelberg

Similar presentations


Presentation on theme: "LNGS, ITALY Stefan Schoenert, MPIK Heidelberg"— Presentation transcript:

1 The Germanium Detector Array for the search of neutrinoless  decays of 76Ge at LNGS (GERDA)
LNGS, ITALY Stefan Schoenert, MPIK Heidelberg International School of Nuclear Physics 27th course Neutrinos in Cosmology, in Astro-, Particle and Nuclear Physics

2 GERDA Collaboration Univ. Tübingen, Germany INFN LNGS, Assergi, Italy
A.Di Vacri, M. Junker, M. Laubenstein, C. Tomei, L. Pandola JINR Dubna, Russia V. Brudanin, V. Egorov, K. Gusev, S. Katulina, A. Klimenko, O. Kochetov, I. Nemchenok, V. Sandukovsky, A. Smolnikov, J. Yurkowski, S. Vasiliev, MPIK, Heidelberg, Germany C. Bauer, O. Chkvorets, W. Hampel, G. Heusser, W. Hofmann, J. Kiko, K.T. Knöpfle, P. Peiffer, S. Schönert, J. Schreiner, B. Schwingenheuer, H. Simgen, G. Zuzel Univ. Köln, Germany J. Eberth, D. Weisshaar Jagiellonian University, Krakow, Poland M.Wojcik Univ. di Milano Bicocca e INFN, Milano, Italy E. Bellotti, C. Cattadori IMMR, Geel, Belgium M. Hult INR, Moscow, Russia I. Barabanov, L. Bezrukov, A. Gangapshev, V. Gurentsov, V. Kusminov, E. Yanovich ITEP Physics, Moscow, Russia S. Belogurov, V.P. Bolotsky, E. Demidova, I.V. Kirpichnikov, A.A. Vasenko, V.N. Kornoukhov Kurchatov Institute, Moscow, Russia A.M. Bakalyarov, S.T. Belyaev, M.V. Chirchenko, G.Y. Grigoriev, L.V. Inzhechik, V.I. Lebedev, A.V. Tikhomirov, S.V. Zhukov MPP, München, Germany I. Abt, M. Altmann, C. Büttner. A. Caldwell, K. Kroeninger, X. Liu, B. Majorovits, H.-G. Moser, R.H. Richter Univ. di Padova e INFN, Padova, Italy A. Bettini, E. Farnea, C. Rossi Alvarez, C.A. Ur Univ. Tübingen, Germany M. Bauer, H. Clement, J. Jochum, S. Scholl, K. Rottler Russian groups own HdM and IGEX crystals: ~ 20 kg

3 Physics goals of GERDA L=2 Primary Objective:
u e- W- ne L=2 0: (A,Z)  (A,Z+2) + 2e- Majorana nature Effective mass: 1/t = G(Q,Z) |Mnucl|2 mee2, (decay generated by (V-A) cc-interaction via exchange of light Majorana neutrinos) mee = |i Uei ² mi | Other Physics: WIMP DM search Method: Operation of HP Ge-diodes enriched in 76Ge in (optional active) cryogenic fluid shield. Line search at Qββ = 2039 keV

4 GERDA @ Gran Sasso: experimental concept
HP Ge-diodes (86%76Ge): point-like energy deposition at Q = 2039 keV Operation of bare Ge diodes in high-purity LN2 or LAr shield (Heusser, Ann, Rev. Nucl. Part. Sci. 45 (1995) 543); proposals based on this idea: GENIUS (H.V. Klapdor-Kleingrothaus et. al., hep-ph/ (1999)); GEM (Y.G. Zdesenko et al., J. Phys. G27 (2001)) Baseline: LN2; possible upgrade LAr: =1.4 g/cm3, active anti-coincidence with scintillation light from LAr Reduction of backgrounds key to sensitivity : Half-life limit w/o backgrounds: t1/2  (MT) with backgrounds: t1/2  (MT)1/2 Bgd’s in HdM & IGEX dominated by external activities in the shielding and cladding materials Goal: “background free within planned exposure”!

5 Phases and physics reach of GERDA
10-3 / (keV·kg·y) 2·1026 (90 % CL) <mee> < 0.09 – 0.29 eV  M·T 10-1 / (keV·kg·y)  (M·T)1/2 3·1025 (90 % CL) KK Phase-I HdM & IGEX ~20 kg Phase-II HdM & IGEX +new diodes ~40 kg 2008 2010

6 Phases and Physics reach of GERDA world-wide collaboration for Phase-III; coop. with MAJORANA started 6·1027 10-3/(keV·kg·y) Phase-III 10-2/(keV·kg·y) 10-1/(keV·kg·y) Phase-II Phase-I

7 Phases and Physics reach of GERDA
| mee| in eV Lightest neutrino (m1) in eV Phase I: Phase II: Phase III: F.Feruglio, A. Strumia, F. Vissani, NPB 659

8 …how to reach <10-3/(keV·kg·y)?
BOREXINO Counting Test Facility (CTF) (‘world record’) 10-3/(keV·kg·y) Q Liquid scintillator target BOREXINO ~10-5/(keV·kg·y) Borexino Collab. PLB 563 (2003)

9 External background: graded shielding
Activity of Tl (Bq/kg) Rock/concrete 3 ·106 Cu (NOSV/OFO1),Pb <20 Water <5 LN, Ar ~0

10 GERDA: Baseline design
Clean room lock Water tank / buffer/ muon veto Vacuum insulated copper vessel Liquid N/Ar Ge Array Under discussion: ‘third wall’

11 copper cryogenic vessel

12 Detector support & contacts
Phase I: HdM & IGEX (p-type coaxial) Phase II: true-coaxial 3x6 segmented n-type Ge diode Prototype Spring Cu: 81 g PTFE: 6.4 g Si: 4.2 g MC: <2 ·10-3 (keV kg y) -1 Support: ~ 40 g

13 New detectors for Phase II: Procurement of enriched Ge
procurement of 15 kg of natural Ge (‘test run’) enrichment of 37.5 kg of Ge-76 completed ! Specially designed protective steel container reduces activation by cosmic rays by factor 20 natGe sample received March 7, 2005

14 Backgrounds in GERDA phase I : B  10-2 cts/(keV kg y)
Source B [10-3 cts/(keV kg y)] Ext.  from 208Tl (232Th) <1 Ext. neutrons <0.05 Ext. muons (veto) <0.03 Int. 68Ge (t1/2= 270 d) 12 Int. 60Co (t1/2= 5.27 y) 2.5 222Rn in LN/LAr <0.2 208Tl, 238U in holder Surface contam. <0.6 Muon veto 180 days exposure after enrichment days underground storage 30 days exposure after crystal growing derived from measurements and MC simulations phase I : B  10-2 cts/(keV kg y) phase II: B  10-3 cts/(keV kg y)  additional bgd. reduction

15 Background reduction techniques
Muon Veto Anti-coincidence between detectors Segmentation of readout electrodes (Phase II) Pulse shape analysis (Phase I+II) Coincidence in decay chain (Ge-68) Scintillation light detection (LArGe)

16 Background reduction techniques
Muon veto Anti-coincidence between detectors Segmentation of readout electrodes (Phase II) Pulse shape analysis (Phase I+II) Coincidence in decay chain (Ge-68) Scintillation light detection (LArGe) K. Kroeniger

17 Background simulations with MaGe
(common Majorana–Gerda Geant4 MC framework) top m-veto water tank neck lead shielding cryo vessel Description of the Gerda setup including shielding (water tank, Cu tank, liquid Nitrogen), crystals array and kapton cables Ge array

18 MaGe simulation of muon induced backgrounds
from Lipari and Stanev, Phys. Rev. D 44 (1991) 3543 Input angular spectrum Input energy spectrum Teramo side Energy (keV) cosq Flux at Gran Sasso: /m2 h (270 GeV)

19 MaGe: cosmic ray muons – Ge signal
Phase I: 9 Ge crystals for a total mass of 19 kg; threshold: 50 keV annihilation peak Sum spectrum without and with anticoincidence 5.5 years Energy (MeV) (1.5  2.5 MeV): 3.3·10-3 counts/keV kg y (~4·10-3 counts/keV kg y in H-M simul.) C. Doerr, NIM A 513 (2003) 596 anticoincidence between 9 crystals reduces background index by factor 3 1.5 MeV 2.5 MeV 1.0 · 10-3 cts/keV kg y Energy (MeV)

20 MaGe: cosmic ray muons - muon veto
Energy deposition in water Cherenkov detector in coincidence with Ge detectors (Ethr>50 keV) 5.5 years Energy (MeV) Threshold 120 MeV  all events cut but two MeV in water (~60 cm)  30,000 ph.  40 p.e. (0.5% coverage)  PMTs No cuts 3.3 · 10-3 (cts/keV kg y) Ge anti-coincidence 1.0 · 10-3 Ge anti-coinc.+ Top -veto (plastic scint.) 4.4 · 10-4 Cerenkov -veto < 3 · 10-5 (95% CL)

21 Internal backgrounds: example 60Co
1: MeV 2: MeV : Emax = 318 keV T0 : crystal growing 0.017 Bq/kg per day exposure Test: detector production in 7.4 days Assume 30 days  2.5 ·10-3 / (keV·kg·y)

22 60Co background spectrum
1 2 1+ 2 Q MC simulation 2 kg

23 60Co: suppression by segmentation
MC simulation Q 2 kg

24 60Co: suppression by segmentation
MC simulation Q Nhit = 3 ~10 (7 seg.) Nseg = 1 2 kg illustration: Simple 7-fold segmentation

25 MaGe: 60Co suppression by segmentation and anti-coincidence
Number of crystals probability per decay to deposit energy within Q ROI per 1 keV energy bin after combined cuts: (18-fold segm.) P = 4.7·10-6/keV (factor ~35 reduction w/r to single unseg. detector) N crystals = 1 Number of segments 6-3z segmentation; Prototype under construction N segments = 1

26 60Co: suppression by LAr Ge-anticoinc.
MC simulation Q Liquid Argon ~100 LAr anticoinc. 2 kg

27 60Co: segmentation and LAr Ge-anticoinc
60Co: segmentation and LAr Ge-anticoinc. are orthogonal suppression methods ~1000 MC simulation Q Liquid Argon Nseg = 1 AND LAr anticoinc 2 kg

28 Experiment: LAr Ge-anticoincidence
54Mn -source 0.18 kg Liquid Argon  20 cm

29 Experiment: LAr Ge-anticoincidence
Experimental Data ~5 0.18 kg Liquid Argon  20 cm

30 LAr Ge-anticoincidence
MC Simulation ~5 Suppression factor limited by escape events! Liquid Argon  20 cm

31 LAr Ge-anticoincidence
90 cm MC Simulation ~60 Suppression factor limited by dead layer 0.18 kg Liquid Argon  100 cm

32 Status - Outlook 2004 • Feb Letter of Intent to LNGS, hep-ex/0404039
• Sep formation of collaboration • Oct funding requests approved by MPG • Oct Proposal to LNGS, 2005 • Jan `prior information notice’ about cryostat tendering in SIMAP • Feb GERDA approved by LNGS, location in Hall A in front of LVD • Mar Technical Proposal to LNGS, 30 kg of enriched Ge-76 ordered • May funding requests approved by INFN • Jun funding request approved by BMBF • Jul Ge-76 order enlarged to 37.5 kg • Jul FMECA & HAZOP safety study for cryostat submitted to LNGS (‘safe if designed & fabricated according to the rules’) • Sep safety iteration with LNGS: “ALARP - third wall?” subsequently: tendering for water tank, first orders for cryostat 2006 • Summer start of construction of water tank in Hall A • ... installation of cryostat, clean room & lock, μ veto, lab rooms 2007 • commissioning, start of physics run

33 Summary approved by LNGS with location in Hall A,
• substantially funded by BMBF, INFN, MPG, and Russia in kind • construction to start in LNGS Hall A in summer 2006 • parallel and fast R&D for phase II • start of data taking in 2007 goal: phase I : background 0.01 cts / (kg٠keV٠y) ► scrutinize KKDC result within 1 year phase II : background cts / (kg٠keV٠y) ► T1/2 > 2٠1026 y , <mee> < 0.09 – 0.29 eV phase III : world wide collaboration ► T1/2 > ~1028 y , <mee> ~10 meV

34 GERDA


Download ppt "LNGS, ITALY Stefan Schoenert, MPIK Heidelberg"

Similar presentations


Ads by Google