Presentation is loading. Please wait.

Presentation is loading. Please wait.

Magnets for the ESRF upgrade phase II

Similar presentations


Presentation on theme: "Magnets for the ESRF upgrade phase II"— Presentation transcript:

1 Magnets for the ESRF upgrade phase II
G. Le Bec, J. Chavanne on behalf of the ESRF upgrade project team European Synchrotron Light Source XXII, Grenoble November 2014

2 Overview Context Where are we? Summary and conclusion
The ESRF phase II magnets Design and prototyping challenges Where are we? Dipoles Combined dipole-quadrupoles Quadrupoles Sextupoles, octupoles Summary and conclusion G. Le Bec et al. -- ESLS XXII, Grenoble, November 2014

3 Context G. Le Bec et al. -- ESLS XXII, Grenoble, November 2014

4 The ESRF phase II magnets
G. Le Bec et al. -- ESLS XXII, Grenoble, November 2014

5 The ESRF phase II magnets
Reduced gradient 100 T/m 85 T/m G. Le Bec et al. -- ESLS XXII, Grenoble, November 2014

6 The ESRF phase II magnets
Reduced field and gradient 0.85 T  0.54 T 49 T/m  34 T/m G. Le Bec et al. -- ESLS XXII, Grenoble, November 2014

7 The ESRF phase II magnets
Challenges High gradients Combined magnets Small bore radius Tight tolerances No space longitudinally More than 1000 magnets G. Le Bec et al. -- ESLS XXII, Grenoble, November 2014

8 Design constraints Field quality
Integration and mechanical constraints Magnet length Vacuum chambers Vibrations Supports Alignment Tunability Power consumption G. Le Bec et al. -- ESLS XXII, Grenoble, November 2014

9 Field quality and tunability
Magnet type GFR radius [mm] Field quality (systematic) Tuning range [%] DL 13 DB/B < 10-3 DQ 7 DG/G < 10-2 Gradient: +/- 2 Q – 50 T/m DB/B < 55 – 110 Q – 85 T/m DB/B < 95 – 105 S DH/H < 0.1 20 – 130 O 0 – 145 G. Le Bec et al. -- ESLS XXII, Grenoble, November 2014

10 High gradient  Small bore radius  Tight tolerances
Small bore magnets Assembly errors Errors at the GFR boundary Mechanical error Multipolar error at the bore radius Bore radius (GFR radius = r) r =R/4 r0=R r0=R/2 Quadrupolar e2 4e2 Sextupolar e3 8e3 Octupolar e4 16e4 High gradient  Small bore radius  Tight tolerances G. Le Bec et al. -- ESLS XXII, Grenoble, November 2014

11 Status G. Le Bec et al. -- ESLS XXII, Grenoble, November 2014

12 Dipole with longitudinal gradient
Field ranging from 0.17 T up to 0.55 T or 0.67 T Total length: 1.85 m Gap: 25 mm Magnet mass: 400 kg PM Mass: 25 kg/Sm2Co17 and 25 kg Strontium ferrite per dipole (Design and measurements of the DL magnet: J. Chavanne) G. Le Bec et al. -- ESLS XXII, Grenoble, November 2014

13 Dipole with longitudinal gradient
Aluminium spacers Iron pole and yoke PM blocks DL module Number of PM blocks is module dependent. Temperature compensation is not shown here. Complete DL magnet on its support G. Le Bec et al. -- ESLS XXII, Grenoble, November 2014

14 Dipole with longitudinal gradient
Homogeneity of central field Quality dominated by pole faces parallelism May need refinement of mechanical tolerances Easy and fast mechanical correction (shimming) Tolerance: DB/B < mm Module 2 without shim (Hall probe meas.) Module 1 without shim (Hall probe meas.) G. Le Bec et al. -- ESLS XXII, Grenoble, November 2014

15 Dipole with longitudinal gradient
Integrated field Preliminary study on straight integrals Stretched wire method Two modules with 0.62 T and 0.41 T Longitudinal gap 5 mm between poles End effect (sextupole) shims not installed Will improve with additional modules G. Le Bec et al. -- ESLS XXII, Grenoble, November 2014

16 Dipole with longitudinal gradient
Longitudinal field Flat top field at longitudinal gap gs = 5 mm The optimum gs may change between the modules of the full magnet (field step dependence) gs G. Le Bec et al. -- ESLS XXII, Grenoble, November 2014

17 Dipole – quadrupoles (DQ)
Bz Bz x x Tapered dipole High field Low gradient Offseted quadrupole High field High gradient G. Le Bec et al. -- ESLS XXII, Grenoble, November 2014

18 Dipole – quadrupoles (DQ)
Bz x DQ specifications GFR radius 7 mm Field 0.54 T Gradient 34 T/m Offseted quadrupole High field High gradient G. Le Bec et al. -- ESLS XXII, Grenoble, November 2014

19 Dipole – quadrupoles (DQ)
Field of an offset quadrupole GFR Bz x Additional power consumption, weight, etc. Region of interest G. Le Bec et al. -- ESLS XXII, Grenoble, November 2014

20 Dipole – quadrupoles A new target for DQ field Pro Cons
Lower power consumption and weight Easy access on one side (vacuum chamber, magnetic measurements) Cons Design is more complex GFR Bz x G. Le Bec et al. -- ESLS XXII, Grenoble, November 2014

21 Dipole – quadrupoles (DQ)
Single sided dipole – quadrupole 2 poles + 2 “half” poles 0.54 T field, 34 T/m gradient Iron length: 1.1 m Magnet mass ~ 1 ton Power consumption: 1.5 kW Main coil Main pole Auxiliary pole Auxiliary coil (in series with main coil) Trimming coil G. Le Bec et al. -- ESLS XXII, Grenoble, November 2014

22 Dipole – quadrupoles (DQ)
Magnetic design GFR Vertical field vs. position. Field is almost zero on one side. DG/G expressed in Specification: DG/G < 10-2. GFR: 7x5 mm Field integration along an arc. G. Le Bec et al. -- ESLS XXII, Grenoble, November 2014

23 Quadrupoles Two quadrupole families Moderate gradient 51 T/m
Bore radius: 15.5 mm Iron length ranging from 160 up to 300 mm Working point: 50 – 110 % of nominal gradient Power: 1 kW for the largest quadrupole High gradient 85 T/m Bore radius: 12.5 mm Iron length ranging from 390 up to 480 mm Working point: 95 – 105 % of nominal gradient Power: 1.6 kW for the largest quadrupole Moderate gradient High gradient G. Le Bec et al. -- ESLS XXII, Grenoble, November 2014

24 Quadrupoles Design criteria Field quality Overall dimensions
Fast pole shaping algorithm developed Overall dimensions Power consumption Cooling and PS constraints Sensitivity to background field Decreased magnet’s power consumption Decreased current density Increased magnet’s transverse dimensions G. Le Bec et al. -- ESLS XXII, Grenoble, November 2014

25 Quadrupoles WPOLE & WYOKE constant WCOIL constant (magnet length)
RCOIL WPOLE & WYOKE constant WCOIL constant (magnet length) G. Le Bec et al. -- ESLS XXII, Grenoble, November 2014

26 Excitation curve of quadrupoles
Excitation curve and saturation Moderate gradient quads optimized at a linear working point High gradient quads optimized at a saturated working point T T (a) (b) Magnetization m0M [T] of the moderate gradient (a) and high gradient (b) quadrupoles at nominal current. Excitation curve of quadrupoles G. Le Bec et al. -- ESLS XXII, Grenoble, November 2014

27 Quadrupoles Magnet design properties Prototyping
DG/G = within the GFR Iron length 480 mm 540 mm total length Magnet mass ~ 1 ton 90 A, 69 turns, 1.7 kW Prototyping Prototype being manufactured G. Le Bec et al. -- ESLS XXII, Grenoble, November 2014

28 Other magnets Sextupole Octupoles 900…1600 T/m2 nominal strength
Magnetic design stabilised Engineering design almost completed Opening/closure repeatability Octupoles Nominal strength 52 T/m3 Maximum strength 65 T/m3 G. Le Bec et al. -- ESLS XXII, Grenoble, November 2014

29 Other magnets Sextupole Octupoles 900…1600 T/m2 nominal strength
Magnetic design stabilised Engineering design almost completed Opening/closure repeatability Octupoles Nominal strength 52 T/m3 Maximum strength 65 T/m3 Prototype built Measured int. strength: 4504 T/m2 @ 6.2A (shorter, air-cooled coils) G. Le Bec et al. -- ESLS XXII, Grenoble, November 2014

30 Conclusion Magnet design Prototyping DL, DQ and quads are challenging
Magnetic design stabilized for all the magnets Engineering design well advanced Prototyping DL prototype measurements in progress Manufacturing of 85 T/m quadrupole prototype in progress Octupole prototype delivered G. Le Bec et al. -- ESLS XXII, Grenoble, November 2014


Download ppt "Magnets for the ESRF upgrade phase II"

Similar presentations


Ads by Google