Presentation is loading. Please wait.

Presentation is loading. Please wait.

What a Punnett Square Can Do for You 1. WHAT ARE THE FACTORS THAT DETERMINE THE EXPRESSION OF TRAITS? 2. HOW CAN INHERITANCE BE MODELED? ©Copyright 2014.

Similar presentations


Presentation on theme: "What a Punnett Square Can Do for You 1. WHAT ARE THE FACTORS THAT DETERMINE THE EXPRESSION OF TRAITS? 2. HOW CAN INHERITANCE BE MODELED? ©Copyright 2014."— Presentation transcript:

1 What a Punnett Square Can Do for You 1. WHAT ARE THE FACTORS THAT DETERMINE THE EXPRESSION OF TRAITS? 2. HOW CAN INHERITANCE BE MODELED? ©Copyright 2014 by www.cpalms.org

2 Punnett Square Article Scenario  You are a gardener and you were given two pea plants. The person who gave them to you said that one plant has the genotype Gg and the other plant has a genotype of gg. You decide to plant them close together to make sure that they will breed with each other and produce offspring. So...  How can inheritance be modeled? ©Copyright 2014 by www.cpalms.org

3  1. The trait being studied in this scenario is pea color.  It takes two alleles to determine some traits, like pea color. ©Copyright 2014 by www.cpalms.org

4  An allele is a different form of the same gene.  A dominant allele is a hereditary unit that blocks the expression of another allele.  2a. The dominant allele expresses for the color green and is represented by the capital letter G. ©Copyright 2014 by www.cpalms.org

5  A recessive allele is a hereditary unit that is blocked by a dominant allele.  2b. The recessive allele expresses for the color yellow and is represented by the lower case letter g. ©Copyright 2014 by www.cpalms.org

6 Your Punnett Square Should Look Like This Gg g g The alleles of one parent’s genes (mother) are separated into gametes during meiosis. The possible gametes are written on the top side. The alleles of the other parent’s genes (father) are separated into gametes during meiosis. The possible gametes are written along the left side. ©Copyright 2014 by www.cpalms.org

7 Your Punnett Square Should Look Like This Gg g g A genotype is the alleles that contain the DNA that expresses for a particular trait. 3. The mother’s genotype is Gg. 4. The father’s genotype is gg. ©Copyright 2014 by www.cpalms.org

8 Your Punnett Square Should Look Like This Gg g g When an organism has two different alleles for a trait, it is called heterozygous. 3. In this case, the genotype Gg is said to be heterozygous. ©Copyright 2014 by www.cpalms.org

9 Your Punnett Square Should Look Like This Gg g g When an organism has two of the same allele, it is called homozygous. 4. In this case, the genotype gg is homozygous recessive. ©Copyright 2014 by www.cpalms.org

10 Your Punnett Square Should Look Like This Gg g g A phenotype is the observable expression of a trait. The genotype controls the phenotype. 5. The mother’s phenotype is green peas. 6. The father’s phenotype is yellow peas. ©Copyright 2014 by www.cpalms.org

11 Your Punnett Square Should Look Like This Gg gGg g Each offspring receives one allele from the mother and one allele from the father. When using a Punnett Square NEVER move gametes in diagonal lines. Always move gametes vertically or horizontally. ©Copyright 2014 by www.cpalms.org

12 Your Punnett Square Should Look Like This Gg gGg g The first offspring received a dominant allele from mom and a recessive allele from dad. This offspring’s genotype is Gg; therefore, its phenotype is green colored peas. ©Copyright 2014 by www.cpalms.org

13 Your Punnett Square Should Look Like This Gg gGg gg g The second offspring received a recessive allele from mom and a recessive allele from dad. This offspring’s genotype is gg; therefore, its phenotype is yellow colored peas. ©Copyright 2014 by www.cpalms.org

14 Your Punnett Square Should Look Like This Gg gGg gg gGg The third offspring received a dominant allele from mom and a recessive allele from dad. This offspring’s genotype is Gg; therefore, its phenotype is green colored peas. ©Copyright 2014 by www.cpalms.org

15 Your Punnett Square Should Look Like This Gg gGg gg gGg gg The fourth offspring received a recessive allele from mom and a recessive allele from dad. This offspring’s genotype is gg; therefore, its phenotype is yellow colored peas. ©Copyright 2014 by www.cpalms.org

16 Your Punnett Square Should Look Like This Gg gGg gg gGg gg 7. ©Copyright 2014 by www.cpalms.org

17 Figuring Probability 8. The possible genotypes for the offspring in this cross are: Gg = heterozygous gg = homozygous recessive ©Copyright 2014 by www.cpalms.org

18 Figuring Probability Gg gGg gg gGg gg There is a 50%, or one in two, chance that the mother will pass on the first allele G. There is a 50%, or one in two, chance that the mother will pass on the second allele g. G 1/2 g 1/2 g 1/2 Gg gg g 1/2 Gg gg ©Copyright 2014 by www.cpalms.org

19 Figuring Probability Gg gGg gg gGg gg There is a 50%, or one in two chance, that the father will pass on the first allele g. There is a 50%, or one in two chance, that the father will pass on the second allele g. G 1/2 g 1/2 g 1/2 Gg gg g 1/2 Gg gg ©Copyright 2014 by www.cpalms.org

20 Figuring Probability G 1/2 g 1/2 g 1/2 Gg 1/4 gg 1/4 g 1/2 Gg 1/4 gg 1/4 This means that each offspring has a 25%, or one in four, chance to inherit a particular allele combination from mom and dad. ½ x ½ = ¼ ©Copyright 2014 by www.cpalms.org

21 Figuring Probability G 1/2 g 1/2 g 1/2 Gg 1/4 gg 1/4 g 1/2 Gg 1/4 gg 1/4 9. The probability that the offspring will inherit the genotype Gg is 50%, or two in four, chance. ¼ + ¼ = ½ ©Copyright 2014 by www.cpalms.org

22 Figuring Probability G 1/2 g 1/2 g 1/2 Gg 1/4 gg 1/4 g 1/2 Gg 1/4 gg 1/4 10. The probability that the offspring will inherit the genotype gg is 50%, or two in four, chance. ¼ + ¼ = ½ ©Copyright 2014 by www.cpalms.org

23 Figuring Probability 11. The possible phenotypes for the offspring in this cross are: Green Peas = (controlled by the genotype Gg) Yellow Peas = (controlled by the genotyhpe gg) ©Copyright 2014 by www.cpalms.org

24 Figuring Probability G 1/2 g 1/2 g 1/2 Gg 1/4 gg 1/4 g 1/2 Gg 1/4 gg 1/4 12. The probability that the offspring will inherit the phenotype of green pea color is 50%, or two in four, chance. ¼ + ¼ = ½ ©Copyright 2014 by www.cpalms.org

25 Figuring Probability G 1/2 g 1/2 g 1/2 Gg 1/4 gg 1/4 g 1/2 Gg 1/4 gg 1/4 13. The probability that the offspring will inherit the phenotype of yellow pea color is 50%, or two in four, chance. ¼ + ¼ = ½ ©Copyright 2014 by www.cpalms.org

26 Ratios G 1/2 g 1/2 g 1/2 Gg 1/4 gg 1/4 g 1/2 Gg 1/4 gg 1/4 The ratio of genotypes is shown like this (Gg : gg) 14. So, the genotype ratio would be 2 : 2, which is reduced to 1 : 1. ©Copyright 2014 by www.cpalms.org

27 Ratios G 1/2 g 1/2 g 1/2 Gg 1/4 gg 1/4 g 1/2 Gg 1/4 gg 1/4 The ratio of phenotypes is shown like this (Green : yellow) 15. So, the phenotype ratio would be also 2 : 2, which is reduced to 1 : 1. ©Copyright 2014 by www.cpalms.org

28 Exit Ticket 1. How do you use a Punnett Square? ©Copyright 2014 by www.cpalms.org

29 Guided Practice Problem #1  Tongue rolling is a genetic trait. The ability to roll the tongue is expressed by a dominant trait. Suppose you have a friend whose parents are heterozygous for rolling their tongues. Answer the following questions about the parents and possible offspring. ©Copyright 2014 by www.cpalms.org

30 1. What is the trait being studied in this scenario?  The ability to roll the tongue is the trait being studied in this scenario. ©Copyright 2014 by www.cpalms.org

31 2. Indicate the dominant and recessive alleles and assign an appropriate letter to each allele:  A. The dominant allele is a rolling tongue. We will use the letter R.  B. The recessive allele is not a rolling tongue. We will use the letter r. ©Copyright 2014 by www.cpalms.org

32 3. What is the genotype of Parent #1 (mother)?  Genotype shown as letters: Rr  Scientific term for this genotype: Heterozygous ©Copyright 2014 by www.cpalms.org

33 4. What is the genotype of Parent #2 (father)?  Genotype shown as letters: Rr  Scientific term for this genotype: Heterozygous ©Copyright 2014 by www.cpalms.org

34 5. What is the phenotype of Parent #1 (mother)?  The phenotype of the mother is a rolling tongue. ©Copyright 2014 by www.cpalms.org

35 6. What is the phenotype of Parent #2 (father)?  The phenotype of the father is a rolling tongue. ©Copyright 2014 by www.cpalms.org

36 7. Draw a Punnett Square to represent the offspring the parents above are likely to have. R r RRRRr r rr ©Copyright 2014 by www.cpalms.org

37 8. What are the possible genotypes of the offspring?  The possible genotypes of the offspring are:  RR = Homozygous dominant  Rr = Heterozygous  rr = Homozygous recessive ©Copyright 2014 by www.cpalms.org

38 9. What are the possible phenotypes of the offspring?  The possible phenotypes of the offspring are:  Rolling Tongue (controlled by the genotype RR or Rr)  No Rolling Tongue (controlled by the genotype rr) ©Copyright 2014 by www.cpalms.org

39 10. What is the probability that the offspring will have a homozygous dominant genotype?  The probability of having an offspring with a homozygous dominant genotype is ¼ or 25%. ©Copyright 2014 by www.cpalms.org

40 11. What is the probability that the offspring will have a heterozygous genotype?  The probability of an offspring inheriting a heterozygous genotype is ½ or 50%. ©Copyright 2014 by www.cpalms.org

41 12. What is the probability that the offspring will have a homozygous recessive genotype?  The probability that an offspring will have a homozygous recessive genotype will be ¼ or 25%. ©Copyright 2014 by www.cpalms.org

42 13. What is the genotype ratio for the possible offspring?  The genotype ratio set-up is (RR : Rr : rr).  The genotype ratio would be 1 : 2 : 1. ©Copyright 2014 by www.cpalms.org

43 14. What is the probability that the offspring will have a phenotype of a rolling tongue?  The probability of having an offspring with a rolling tongue phenotype is ¾ or 75%. ©Copyright 2014 by www.cpalms.org

44 15. What is the probability that the offspring will have a phenotype of a non-rolling tongue?  The probability of an offspring inheriting a non-rolling tongue phenotype is ¼ or 25%. ©Copyright 2014 by www.cpalms.org

45 16. What is the phenotype ratio for the possible offspring?  The phenotype ratio set-up is (rolling tongue : non-rolling tongue).  The phenotype ratio would be 3 : 1. ©Copyright 2014 by www.cpalms.org

46 17. What is the probability that your friend will be able to roll his/her tongue?  There is a ¾ or 75% chance that my friend will be able to roll his/her tongue. ©Copyright 2014 by www.cpalms.org

47 Guided Practice Problem #2  Complete the following questions if you bought a pair of pea plants on sale at the local nursery. The clerk at the store told you that the tall stemmed pea plant’s genotype is homozygous dominant. The other plant’s genotype is homozygous recessive and has a short stems. ©Copyright 2014 by www.cpalms.org

48 1. What is the trait being studied in this scenario?  The height of the plant (stem length) is the trait being studied in this scenario. ©Copyright 2014 by www.cpalms.orgwww.cpalms.org

49 2. Indicate the dominant and recessive genes and assign an appropriate letter to each allele:  A. The dominant gene is a tall height. We will use the letter T.  B. The recessive allele is a short height. We will use the letter t. ©Copyright 2014 by www.cpalms.org

50 3. What is the genotype of Parent #1 (mother)?  Genotype shown as letters: TT  Scientific term for this genotype: Homozygous dominant ©Copyright 2014 by www.cpalms.org

51 4. What is the genotype of Parent #2 (father)?  Genotype shown as letters: tt  Scientific term for this genotype: Homozygous recessive ©Copyright 2014 by www.cpalms.org

52 5. What is the phenotype of Parent #1 (mother)?  The phenotype of the mother is a tall height. ©Copyright 2014 by www.cpalms.org

53 6. What is the phenotype of Parent #2 (father)?  The phenotype of the father is a short height. ©Copyright 2014 by www.cpalms.org

54 7. Draw a Punnett Square to represent the offspring the parents above are likely to have. TT tTt t ©Copyright 2014 by www.cpalms.org

55 8. What are the possible genotypes of the offspring?  The only possible genotype of the offspring is:  Tt = Heterozygous ©Copyright 2014 by www.cpalms.org

56 9. What are the possible phenotypes of the offspring?  The possible phenotypes of the offspring are:  Tall Height (controlled by the genotype Rr) ©Copyright 2014 by www.cpalms.org

57 10. What is the probability that the offspring will have a homozygous dominant genotype?  The probability of having an offspring with a homozygous dominant genotype is 0/4 or 0%. ©Copyright 2014 by www.cpalms.org

58 11. What is the probability that the offspring will have a heterozygous genotype?  The probability of an offspring inheriting a heterozygous genotype is 4/4 or 100%. ©Copyright 2014 by www.cpalms.org

59 12. What is the probability that the offspring will have a homozygous recessive genotype?  The probability that an offspring will have a homozygous recessive genotype will be 0/4 or 0%. ©Copyright 2014 by www.cpalms.org

60 13. What is the genotype ratio for the possible offspring?  The genotype ratio set-up is (Tt).  The genotype ratio would be 1 for the heterozygous genotype.  In other words, all of them. ©Copyright 2014 by www.cpalms.org

61 14. What is the probability that the offspring will have a phenotype of a tall height?  The probability of having an offspring with a tall height phenotype is 4/4 or 100%. ©Copyright 2014 by www.cpalms.org

62 15. What is the probability that the offspring will have a phenotype of a short height?  The probability of an offspring inheriting a short height phenotype is 0/4 or 0%. ©Copyright 2014 by www.cpalms.org

63 16. What is the phenotype ratio for the possible offspring?  The phenotype ratio set-up is (tall height : short height).  The phenotype ratio would be 1 for tall height.  In other words, all of them. ©Copyright 2014 by www.cpalms.org

64 17. If you wanted to produce more short pea plants rather than tall pea plants, would you be able to with these two plants? Explain why on the back of this sheet of paper.  Answer 1— If you answered no.  I would not be able to produce short pea plants with this pair of plants because one parent is homozygous dominant and can only pass on the dominant get to their offspring. This means that every offspring produced will have at least one dominant allele. So, all offspring will by tall. ©Copyright 2014 by www.cpalms.org

65 17. If you wanted to produce more short pea plants rather than tall pea plants, would you be able to with these two plants? Explain why on the back of this sheet of paper.  Answer 2—If you answered yes.  I would not be able to produce short pea plants in this generation; however, if I crossed two of the heterozygous offspring, I would be able to produce some short pea plants. If two heterozygous tall pea plants crossed about 1 out of every 4 plants will be short. ©Copyright 2014 by www.cpalms.org

66 Exit Ticket 1. What kinds of information can you find while using a Punnett Square? ©Copyright 2014 by www.cpalms.org

67 Guided Practice Problem #3  A white flowered plant is crossed with a plant that is heterozygous for purple flowers. Purple flowered plants have at least one dominant allele, while white flowered plants have no dominant alleles. Answer the following questions for this cross. ©Copyright 2014 by www.cpalms.org

68 1. What is the trait being studied in this scenario?  Flower color is the trait being studied in this scenario. ©Copyright 2014 by www.cpalms.org

69 2. Indicate the dominant and recessive genes and assign an appropriate letter to each allele:  A. The dominant gene is the color purple. We will use the letter P.  B. The recessive allele is the color white. We will use the letter p. ©Copyright 2014 by www.cpalms.org

70 3. What is the genotype of Parent #1 (mother)?  Genotype shown as letters: pp  Scientific term for this genotype: Homozygous recessive ©Copyright 2014 by www.cpalms.org

71 4. What is the genotype of Parent #2 (father)?  Genotype shown as letters: Pp  Scientific term for this genotype: Heterozygous ©Copyright 2014 by www.cpalms.org

72 5. What is the phenotype of Parent #1 (mother)?  The phenotype of the mother is white flowers. ©Copyright 2014 by www.cpalms.org

73 6. What is the phenotype of Parent #2 (father)?  The phenotype of the father is purple flowers. ©Copyright 2014 by www.cpalms.org

74 7. Draw a Punnett Square to represent the offspring the parents above are likely to have. pp PPpPp PpPp ppp ©Copyright 2014 by www.cpalms.org

75 8. What are the possible genotypes of the offspring?  The possible genotypes of the offspring are:  P p = Heterozygous  pp = Homozygous recessive ©Copyright 2014 by www.cpalms.org

76 9. What are the possible phenotypes of the offspring?  The possible phenotypes of the offspring are:  Purple Flowers (controlled by the genotype P p)  While Flowers (controlled by the genotype pp) ©Copyright 2014 by www.cpalms.org

77 10. What is the probability that the offspring will have a homozygous dominant genotype?  The probability of having an offspring with a homozygous dominant genotype is 0/4 or 0%. ©Copyright 2014 by www.cpalms.org

78 11. What is the probability that the offspring will have a heterozygous genotype?  The probability of an offspring inheriting a heterozygous genotype is ½ or 50%. ©Copyright 2014 by www.cpalms.org

79 12. What is the probability that the offspring will have a homozygous recessive genotype?  The probability that an offspring will have a homozygous recessive genotype will be ½ or 50%. ©Copyright 2014 by www.cpalms.org

80 13. What is the genotype ratio for the possible offspring?  The genotype ratio set-up is ( P p : pp).  The genotype ratio would be 2 : 2.  Reduce the ratio to 1 : 1. ©Copyright 2014 by www.cpalms.org

81 14. What is the probability that the offspring will have a phenotype of purple flowers?  The probability of having an offspring with a purple flower phenotype is ½ or 50%. ©Copyright 2014 by www.cpalms.org

82 15. What is the probability that the offspring will have a phenotype of white flowers?  The probability of an offspring inheriting a non-rolling tongue phenotype is ½ or 50%. ©Copyright 2014 by www.cpalms.org

83 16. What is the phenotype ratio for the possible offspring?  The phenotype ratio set-up is (purple flowers : white flowers).  The phenotype ratio would be 2 : 2.  Reduce the ratio to 1 : 1. ©Copyright 2014 by www.cpalms.org

84 17. You want to have a pea plant garden with about fifty percent white and fifty percent purple flowers. Which offspring would you cross to ensure that you would keep producing about half of each flower color every generation?  Create more Punnett Squares to help you answer this question. pp PPpPp PpPp ppp P p PPPPpPp p P p pp pp p p ©Copyright 2014 by www.cpalms.org

85 17. You want to have a pea plant garden with about fifty percent white and fifty percent purple flowers. Which offspring would you cross to ensure that you would keep producing about half of each flower color every generation?  Create more Punnett Squares to help you answer this question. pp PPpPp PpPp ppp P p PPPPpPp p P p pp pp p p ©Copyright 2014 by www.cpalms.org

86 17. You want to have a pea plant garden with about fifty percent white and fifty percent purple flowers. Which offspring would you cross to ensure that you would keep producing about half of each flower color every generation?  Explain.  I would cross a heterozygous offspring with a homozygous recessive offspring to make sure that I had half purple and half white flowers. The first cross (Pp x Pp) would create too many purple flowers and the third cross (pp x pp) would create nothing but white flowers. The second cross (Pp x pp) would create the right amount because only half of the offspring would most likely inherit the dominant allele from one parent. ©Copyright 2014 by www.cpalms.org

87 Wrap Up  What are some advantages of using a Punnett Square mathematical model?  What are some disadvantages of using a Punnett Square mathematical model? ©Copyright 2014 by www.cpalms.org

88 Advantages and Disadvantages of a Punnett Square  Advantages  Punnett squares are a mathematical model of what could happen in the real world.  Punnett squares show you the possible genetic combinations for all offspring.  You can calculate the probability of  Genotypes  Phenotypes  Genotype ratios  Phenotype ratios  Disadvantages  Punnett Squares will only predict what could happen, NOT what will happen exactly in the real world. ©Copyright 2014 by www.cpalms.org


Download ppt "What a Punnett Square Can Do for You 1. WHAT ARE THE FACTORS THAT DETERMINE THE EXPRESSION OF TRAITS? 2. HOW CAN INHERITANCE BE MODELED? ©Copyright 2014."

Similar presentations


Ads by Google