Download presentation
Presentation is loading. Please wait.
Published byAnissa Amber Adams Modified over 9 years ago
1
Lecture 6.0 Properties of Dielectrics
2
Dielectric use in Silicon Chips Capacitors –On chip –On Circuit Board Insulators –Transistor gate –Interconnects Materials –Oxides –SiO 2 –Boro-Silicate Glass –Nitrides –BN –polymers
3
Importance of Dielectrics to Silicon Chips Size of devices –Electron Tunneling dimension Chip Cooling- Device Density –Heat Capacity –Thermal Conductivity Chip Speed –Capacitance in RC interconnects
4
Band theory of Dielectrics Forbidden Zone–Energy Gap-LARGE Valence Band Conduction Band
5
Difference between Semiconductors and Dielectrics MaterialE g (eV) Ge0.67 Si1.12 GaAs1.43 SiO 2 8 UO 2 5.2 Ga 2 O 3 4.6 Fe 2 O 3 3.1 ZnO3.2 NiO4.2 Al 2 O 3 8 k B T =0.0257 eV at 298˚K
6
Fermi-Dirac Probability Distribution for electron energy, E Probability, F(E)= (e {[E-E f ]/k B T} +1) -1 –E f is the Fermi Energy
7
Number of Occupied States Fermi-Dirac Density of States T>1000K only
8
Probability of electrons in Conduction Band Lowest Energy in CB E-E f E g /2 Probability in CB F(E)= (exp{[E-E f ]/k B T} +1) -1 ) = (exp{E g /2k B T} +1) -1 exp{-E g /2k B T} for E g >1 eV @ 298K exp{-(4eV)/2k B T}= exp{-100} @ 298K k B T =0.0257 eV at 298˚K
9
Intrinsic Conductivity of Dielectric Charge Carriers –Electrons –Holes –Ions, M +i, O -2 = n e e e + n h e h # electrons = # holes – n e e ( e + h ) –n e C exp{-E g /2k B T}
10
Non-Stoichiometric Dielectrics Metal Excess M 1+x O Metal with Multiple valence Metal Deficiency M 1-x O Metal with Multiple valence Reaction Equilibrium K eq (P O2 ) ±x/2 +4 +2 +3
11
Density Changes with Po 2 SrTi 1-x O 3
12
Non-Stoichiometric Dielectrics Excess M 1+x O Deficient M 1-x O
13
Non-Stoichiometric Dielectrics K i =[h+][e-] K” F =[O” i ][V” O ] Conductivity =f(Po 2 ) Density =f(Po 2 )
14
Dielectric Conduction due to Non-stoichiometry N-type P-type
15
Dielectric Intrinsic Conduction due to Non-stoichiometry N-type P-type Excess Zn 1+x O Deficient Cu 2-x O + h
16
Extrinsic Conductivity Donor Doping Acceptor Doping n-type p-type E d = -m* e e 4 /(8 ( o ) 2 h 2 ) E f =E g -E d /2 E f =E g +E a /2
17
Extrinsic Conductivity of Non-stoichiometry oxides Acceptor Doping p-type p= 2(2 m* h k B T/h 2 ) 3/2 exp(-E f /k B T) Law of Mass Action, N i p i =n d p d or =n n d n @ 10 atom % Li in NiO conductivity increases by 8 orders of magnitude @ 10 atom % Cr in NiO no change in conductivity
18
Capacitance C= o A/d =C/C o =1+ e e = electric susceptibility
19
Polarization P = e E e = atomic polarizability Induced polarization P=(N/V)q
20
Polar regions align with E field P=(N/V) E loc i (N i /V) i =3 o ( -1)/( +2)
21
Local E Field Local Electric Field E loc =E’ + E E’ = due to surrounding dipoles E loc =(1/3)( +2)E
22
Ionic Polarization P=P e +P i P e = electronic P i = ionic P i =(N/V)eA
23
Thermal vibrations prevent alignment with E field
24
Polar region follows E field opt = (Vel/c) 2 opt = n 2 n=Refractive index
25
Dielectric Constant Material ( = 0) opt =n 2 Diamond5.685.66 NaCl5.902.34 LiCl11.952.78 TiO 2 946.8 Quartz(SiO 2 )3.852.13
26
Resonant Absorption/dipole relaxation Dielectric Constant imaginary number ’ real part dielectric storage ” imaginary part dielectric loss o natural frequency
27
Dipole Relaxation Resonant frequency, o Relaxation time,
28
Relaxation Time,
29
Dielectric Constant vs. Frequency
30
Avalanche Breakdown
31
Like nuclear fission
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.