Download presentation
Presentation is loading. Please wait.
Published byValerie Cobb Modified over 9 years ago
1
High energy, high repetition rate pump laser system for OPCPAs A.-L. Calendron 1,2,3, L. E. Zapata 1,4, H. Çankaya 1,2, H. Lin 4 and F. X. Kärtner 1,2,3,4 1 Center for Free-Electron Laser Science, DESY, Hamburg, Germany 2 The Hamburg Centre for Ultrafast Imaging 3 Physics Department, University of Hamburg 4 Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, MIT, Cambridge, MA, USA 26. August 2014
2
Why is high energy needed ? E 1, 1 E 2, 2 E 3, 3 E 4, 4 E 5, 5 E 6, 6 E 7, 7 E 8, 8 Waveform Nonlinear Optics: study and control of strong-field light-matter interactions in atoms, molecules and solids on a sub-cycle time scale multi-mJ IR pulses for phase-matched long-wavelength HHG Parallel synthesis Ti:Sapphire frequency syntheziser: Results Cirmi et al., LPHYS (2014) Rossi et al., CLEO (2014)
3
Pump chain for OPCPA pumping Cryo- Yb:YAG Amplifier 60 mJ 0.6 nm, 0.4 ns 1 kHz Cryo- Yb:YAG amplifier 1.1 J 0.7 nm, 0.8 ns 1 kHz Yb Master Osc. 1 nJ 200 fs duration 42.5 MHz Yb:KYW Regen > 5 mJ 3 nm, 2 ns 1 kHz MLD grating Compressor ~ 1 J 10 ps, 1 kHz CFBG Stretcher 0.6 nJ 10 nm stretched (0.65 ns/n m) MLD grating Compresso r 4.2 mJ, 700 fs, 1 kHz CEP Stable front-end ~10 nJ, 570 nm- 2.5 µm, 1 kHz OPCPA +Frequency Synthesis ~ mJ, TL: <3 fs, 1 kHz
4
Pump chain for OPCPA pumping Cryo- Yb:YAG Amplifier 60 mJ 0.6 nm, 0.4 ns 1 kHz Cryo- Yb:YAG amplifier 1.1 J 0.7 nm, 0.8 ns 1 kHz Yb Master Osc. 1 nJ 200 fs duration 42.5 MHz Yb:KYW Regen > 5 mJ 3 nm, 2 ns 1 kHz MLD grating Compressor ~ 1 J 10 ps, 1 kHz CFBG Stretcher 0.6 nJ 10 nm stretched (0.65 ns/n m) MLD grating Compresso r 4.2 mJ, 700 fs, 1 kHz CEP Stable front-end ~10 nJ, 570 nm- 2.5 µm, 1 kHz OPCPA +Frequency Synthesis ~ mJ, TL: <3 fs, 1 kHz
5
Experimental setup E out LD M3M2 M1 DC XTAL LL λ/2 M7 M6 λ/4PCTFP M5 M4 LPB S S Regenerative amp. FI Osc E seed E osc CFBG1 FA1 CFBG2 FA2 CFBG3CFBG4 C2 C1 C3 Stretcher λ/2 TFP M8 FM1 &2 RM G1 G2 Compressor To cryo-multi- pass amp. To Front- end Yb:KYW – 42.5 MHz 210 fs, nJ CFBG + 2 YDGA 0.6x ns/nm nm bandwidth Eout = 0.6 nJ Dual crystal Yb:KYW 1 kHz Multi-layer dielectric grating Double pass
6
Regenerative amplifier Calendron et al., Opt. Expr. (submitted) -E out = 6.4 mJ @ 1 kHz, from 0.6 nJ seed Long term stability Caustic: M 2 < 1.1 Comparison with simulations
7
Pump chain for OPCPA pumping Cryo- Yb:YAG Amplifier 60 mJ 0.6 nm, 0.4 ns 1 kHz Cryo- Yb:YAG amplifier 1.1 J 0.7 nm, 0.8 ns 1 kHz Yb Master Osc. 1 nJ 200 fs duration 42.5 MHz Yb:KYW Regen > 5 mJ 3 nm, 2 ns 1 kHz MLD grating Compressor ~ 1 J 10 ps, 1 kHz CFBG Stretcher 0.6 nJ 10 nm stretched (0.65 ns/n m) MLD grating Compresso r 4.2 mJ, 700 fs, 1 kHz CEP Stable front-end ~10 nJ, 570 nm- 2.5 µm, 1 kHz OPCPA +Frequency Synthesis ~ mJ, TL: <3 fs, 1 kHz
8
Gain narrowing and compression -Stretching ratio: 0.65 ns/nm -Compression of the 3.6 nm broad spectrum to <700 fs -Energy in the pedestals: 16%
9
Pump chain for OPCPA pumping Cryo- Yb:YAG Amplifier 60 mJ 0.6 nm, 0.4 ns 1 kHz Cryo- Yb:YAG amplifier 1.1 J 0.7 nm, 0.8 ns 1 kHz Yb Master Osc. 1 nJ 200 fs duration 42.5 MHz Yb:KYW Regen > 5 mJ 3 nm, 2 ns 1 kHz MLD grating Compressor ~ 1 J 10 ps, 1 kHz CFBG Stretcher 0.6 nJ 10 nm stretched (0.65 ns/n m) MLD grating Compresso r 4.2 mJ, 700 fs, 1 kHz CEP Stable front-end ~10 nJ, 570 nm- 2.5 µm, 1 kHz OPCPA +Frequency Synthesis ~ mJ, TL: <3 fs, 1 kHz
10
White-light generation Regen Comp TFPλ/2 L1 X1 X2 X3 X4 TFPλ/2 TFP L2 L3 L5 Spect. X5 M1M1 M6M6 M2M2 C1 M3M3 C2 M4M4 C4 D1 M5M5 C3 PM L6 M7M7 BS White-Light 1 OPA 1 OPA 2 White-Light 2 f-2f L4
11
Pump chain for OPCPA pumping Cryo- Yb:YAG Amplifier 60 mJ 0.6 nm, 0.4 ns 1 kHz Cryo- Yb:YAG amplifier 1.1 J 0.7 nm, 0.8 ns 1 kHz Yb Master Osc. 1 nJ 200 fs duration 42.5 MHz Yb:KYW Regen > 5 mJ 3 nm, 2 ns 1 kHz MLD grating Compressor ~ 1 J 10 ps, 1 kHz CFBG Stretcher 0.6 nJ 10 nm stretched (0.65 ns/n m) MLD grating Compresso r 4.2 mJ, 700 fs, 1 kHz CEP Stable front-end ~10 nJ, 570 nm- 2.5 µm, 1 kHz OPCPA +Frequency Synthesis ~ mJ, TL: <3 fs, 1 kHz
12
Cryogenic Yb:YAG amplifier: Gain Composite disk with fashioned edges Control disk Zapata et al., ASSL 2013, talk AF3A.10 Zapata et al., Opt. Lett. (submitted) Out Spatial filter Cryogenic CTD Heat Laser Fluorescence THE PREDICTED INCREASE IN GAIN HOLD-OFF WAS REALIZED
13
Chirped pulse amplification 13 68 mJ pulse energy Maximum intensity ~ 10 GW/cm 2 The output was stable at all rep. rates 28% slope eff. Pulse energy [mJ] Absorbed energy [mJ] Franz-Nodvik calc. verifed gain/loss measurements Frantz-Nodvik T = 93% G = 3.3x ~ 5.2 dB Frantz-Nodvik T = 93% G = 3.3x ~ 5.2 dB
14
Results with optimized seed laser Limitations in seed energy and stretching overcome now with the new seed: E seed = 5.5 mJ and τ = 2.35 ns With only 6 passes, >30mJ extracted from the disk, compared to 23 mJ with limited seed. Output energy for 6 passes through the disk:
15
Summary Demonstration of a high energy pump-line for OPCPA pumping Yb doped laser systems => scalability to high energies – Suitable for pumping OPCPA´s up to high energies Outlook: – Compression of the high energy pulses – Parametric amplification of the front-end
16
Thank you for your attention !
17
Backups
18
Simulations: differential equations Evolution of the population inversion: Evolution of the pump fluence through the crystal: Evolution of the laser fluence through the crystals: Evolution of the laser fluence through the cavity: With: and:
19
Simulations
20
Yb:KYW: CW characterization 19.4 W 1031 nm Cavity dumped:
21
Pointing stability: after compressor
22
Cryo Yb:YAG: Bandwidth measurements Fluorescence bandwidth measured for different temperatures by adjusting the heat load on the cold head
23
Cryo Yb:YAG: Bandwidth measurements Spectral bandwidth for different pump power:
24
Summary Demonstration of a high energy pump-line for OPCPA pumping – Stretcher: CFBG, S-R = 0.65 ns /nm – Regenerative amplifier: Yb:KYW, dual crystal cavity E max = 6.5 mJ @ 1 kHz τ = 700 fs after compression with MLD gratings – Power amplifier: Cryogenic Yb:YAG composite thin-disk 6 passes: 30 mJ – 12 passes: 64 mJ Outlook: – 100 mJ after the power amplifier – Compression of the high energy pulses – Parametric amplification of the front-end
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.