Download presentation
1
Fatigue crack initiation in Ti-6Al-4V alloy
Kristell Le Biavant - Guerrier directed by : Claude Prioul Sylvie Pommier LMSS-Mat, Ecole Centrale Paris Valérie Gros Bruno Brethes Snecma, Villaroche Contributions of : M.Sampablo, S.Billard & V.Malherbe
2
A ghost structure : the macrozones Macrozones and fatigue failure
Plan Industrial issue A ghost structure : the macrozones Macrozones and fatigue failure Model for fatigue life prediction Conclusions and perspectives
3
A ghost structure : the macrozones Macrozones and fatigue failure
Plan Industrial issue A ghost structure : the macrozones Macrozones and fatigue failure Model for fatigue life prediction Conclusions and perspectives
4
Industrial issue Fatigue tests on notched specimens
Applied stress (MPa) <N> -3s Fatigue life
5
Industrial issue The material
Temperature b-transus 950°C 700°C Time b-forging recrystallisation a+b-forging annealing
6
Industrial issue The material
Base Microstructure = 50% primary a grains (hcp) + 50% lamellar grains (a lamellae (hcp) in b matrix (cc))
7
A ghost structure : the macrozones Macrozones and fatigue failure
Plan Industrial issue A ghost structure : the macrozones Macrozones and fatigue failure Model for fatigue life prediction Conclusions and perspectives
8
A ghost structure : the macrozones
A contrast appears at a millimetric scale (after a 0,5 HF - attack)
9
A ghost structure : the macrozones
Photoelastic analysis Plastic strain + cyclic bending test Specimen surface after : a tensile test conducted up to a plastic strain of 1% a cyclic bending test (Smax=800MPa, R=-1) S S 1cm S=350MPa S=800MPa A strongly inhomogeneous strain at a millimetric scale
10
A ghost structure : the macrozones Vocabulary
A 2 scale material ~1mm 15µm ‘macrozones’ ‘grains’ nodules or lamellar grains
11
A ghost structure : the macrozones RX characterisation
Basal pole figures Prismatic pole figures
12
A ghost structure : the macrozones Conclusions
Existence of a millimetric structure : the macrozones Macrozones = areas where a-phase has a major crystallographic orientation + minor secondary orientations The origin of the macrozones is still unclear The macrozones have a strong influence on the local mechanical response of the material
13
A ghost structure : the macrozones Macrozones and fatigue failure
Plan Industrial issue A ghost structure : the macrozones Macrozones and fatigue failure Observations Crack initiation Crack growth Model for fatigue life prediction Conclusions and perspectives
14
Macrozones and fatigue failure Observations
Specimen surface after a cyclic bending test (Smax=800MPa, R=-1) S Within each macrozones cracks are parallel one to another S A strongly inhomogeneous cracking process at a millimetric scale
15
Macrozones and fatigue failure Observations
Specimen surface after a cyclic bending test (Smax=800MPa, R=-1) N=4000cycles N=3000cycles Fatigue cracking and interfaces between neighbouring macrozones N=5000cycles
16
Macrozones and fatigue failure Crack initiation
Relationship between the crystallographic orientation and crack initiation : C.O. Average crack orientation (C.O.)
17
Macrozones and fatigue failure Crack initiation
Relationship between the crystallographic orientation and crack initiation :
18
Macrozones and fatigue failure Crack initiation
Fatigue cracks initiate along slip bands :
19
Macrozones and fatigue failure Crack initiation
Schmid factor calculations : Hypotheses : A single orientation within the macrozone s local = S macroscopic Slip intensity : t = S . cos f . cos l
20
Macrozones and fatigue failure Crack initiation
Within each of the 12 macrozones studied : Fatigue cracks observed cracks parallel to basal plane or cracks parallel to a prismatic plane or no cracks Major crystallographic orientation (measured) Maximum resolved shear stresses tmax (calculated)
21
Macrozones and fatigue failure Crack initiation
tmax (MPa) basal tBc Macrozone number Macrozones with ‘prismatic’ cracks Macrozones with ‘basal’ cracks
22
Macrozones and fatigue failure Crack initiation
tPc prism tmax (MPa) Macrozone number Macrozones with ‘prismatic’ cracks Macrozones with ‘basal’ cracks
23
Macrozones and fatigue failure Crack initiation
tPc tBc tmax (MPa) Macrozone number Macrozones with ‘prismatic’ cracks Macrozones with ‘basal’ cracks
24
Macrozones and fatigue failure Crack initiation
tBmax > tBc Fatigue crack initiation if or tPmax > tPc Within each studied macrozone : Fatigue cracks observed Fatigue crack density (measured) Major crystallographic orientation (measured) Resolved shear stresses amplitude Dtmax (calculated)
25
Macrozones and fatigue failure Crack initiation
Crack density of the macrozone (µm/mm2 for N cycles) basal Dtmax (MPa)
26
Macrozones and fatigue failure Crack initiation
Crack density of the macrozone (µm/mm2 for N cycles) ? prism Dtmax (MPa)
27
Macrozones and fatigue failure Crack initiation
Surface effect ‘uneasy’ initiation ‘easy’ initiation Surface effect correction cos . cos . cos M.W. Brown , K. J. Miller, (1973). A theory for fatigue failure under multiaxial stress-strain conditions. Proc.Instn.Mech.Engrs, Vol. 187, pp
28
Macrozones and fatigue failure Crack initiation
Crack density of the macrozone (µm/mm2 for N cycles) crack density = f(Dt, cos q , N) uncracked macrozones Dtmax . cos q (MPa)
29
A ghost structure : the macrozones Macrozones and fatigue failure
Plan Industrial issue A ghost structure : the macrozones Macrozones and fatigue failure Observations Crack initiation Crack growth Model for fatigue life prediction Conclusions and perspectives
30
Macrozones and fatigue failure Crack growth
Importance of crack coalescence in growth mechanism : Crack length (µm) Number of cycles
31
Macrozones and fatigue failure Crack growth
Importance of crack coalescence in growth mechanism : Example of coalescence process
32
Macrozones and fatigue failure Crack growth
Importance of crack coalescence in growth mechanism : Crack length (µm) Number of cycles Crack length (µm) Number of cycles
33
Macrozones and fatigue failure Crack growth
Two mechanisms are involved in fatigue crack growth : crack coalescence ‘pure’ crack growth Crack initiation density Inhomogeneous cracking process Macrozone crystallographic orientation not significant
34
Macrozones and fatigue failure Conclusions
Strong influence of macrozones on short cracks : Cracks initiate along basal or prismatic slip bands if tmax > tc Fatigue crack density = f (1,, 2,Dt, cos q , N) Short crack growth = crack coalescence + ‘pure’ crack growth Long crack growth follows a Paris regime (a > 500µm)
35
A ghost structure : the macrozones Macrozones and fatigue failure
Plan Industrial issue A ghost structure : the macrozones Macrozones and fatigue failure Model for fatigue life prediction Model description Hypotheses control Conclusions and perspectives
36
Model for fatigue life prediction Model description
Number of cycles for short crack growth Number of cycles for long crack growth Number of cycles for fatigue failure
37
Model for fatigue life prediction Model description
Small grain microstructure Macrozones Large grain microstructure Within the macrozone, equivalence between crack density and a longer crack
38
Model for fatigue life prediction Model description
Definition of a crack density zone of influence of the crack (Kachanov, 1993)
39
Model for fatigue life prediction Model description
Threshold short / long cracks Short cracks 1mm 500µm Long cracks Crack length Crack density evolution law macrozone size Paris law
40
Initiation model description
crack density N=3000 N=2000 N=5000 crack density N N=1000 Dt.cosq
41
Initiation model description
crack density Transition between short / long cracks S rc dc N=1000 Dt.cosq Dt.cosq S,f1,F,f2
42
Model for fatigue life prediction Model description
Crack density evolution law Number of cycles for short crack growth Threshold short / long cracks Number of cycles for long crack growth Number of cycles for fatigue failure
43
A ghost structure : the macrozones Macrozones and fatigue failure
Plan Industrial issue A ghost structure : the macrozones Macrozones and fatigue failure Model for fatigue life prediction Model description Hypotheses control Conclusions and perspectives
44
Model for fatigue life prediction Hypotheses control
N growth = C.DKm da a0 af ? Crack growth model (Paris law) ~ macrozone size
45
Model for fatigue life prediction Hypotheses control
46
Model for fatigue life prediction Hypotheses control
1. Initiation located on the fracture surface Macrozone located at the initiation site electropolished
47
Model for fatigue life prediction Hypotheses control
1. Initiation located on the fracture surface Macrozone located at the initiation site electropolished 2. Major crystallographic orientation at the initiation site measured (EBSD) S 3. tBmax and tPmax calculated 3D-analysis elastic calculation Ti-6Al-4V Ti-a 4. Nf calculated
48
Model for fatigue life prediction Hypotheses control
X 3,8 X 0,9 X 0,8 X 0,3
49
Model for fatigue life prediction Conclusions
1. Initiation model based on fatigue crack density within the macrozone 2. Crack growth model Threshold short / long cracks = macrozone size 3. Fatigue life prediction Good understanding of life scatter on notched specimen
50
A ghost structure : the macrozones Macrozones and fatigue failure
Plan Industrial issue A ghost structure : the macrozones Macrozones and fatigue failure Model for fatigue life prediction Conclusions and perspectives
51
Model for fatigue life prediction Conclusions
1. Main aim of this study achieved : Fatigue life scatter explained 2. New result : Macrozone existence exhibited 3. Influence of macrozones on fatigue failure : Crack initiation Crystallographic orientation Crack growth Macrozone size 4. Fatigue life model proposed
52
? Conclusions Comparison between notch size and macrozone size
Notch size ~ macrozone size Notch size >> macrozone size Large scatter of Nf Low scatter of Nf (lower limit) Distribution of crystallographic orientations
53
Perspectives Model improvements 1. Normal stress 2. Stress calculation within the macrozone 3. Improvement of evolution law of crack density 4. Distribution of crystallographic orientations
54
Material improvements
Perspectives Material improvements 1. Understanding of thermo-mechanical treatment 2. Reduce macrozone size 3. Control of crystallographic orientation ? Fatigue life for each zone of the disk
55
A ghost structure : the macrozones Macrozones and fatigue failure
Plan Industrial issue Fatigue on notched specimen The material of the study A ghost structure : the macrozones Macrozones and fatigue failure Observations Crack initiation Crack growth Model for fatigue life prediction Model description Hypotheses control Conclusions and perspectives
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.