Download presentation
Presentation is loading. Please wait.
Published byPiers Shelton Modified over 9 years ago
1
Dynamical heterogeneity and relaxation time very close to dynamical arrest L. Cipelletti LCVN, Université Montpellier 2 and CNRS Collaborators: L. Berthier (LCVN), V. Trappe (Fribourg) Students: P. Ballesta, G. Brambilla, A. Duri, D. El Masri Postdocs: S. Maccarrone, M. Pierno
2
Soft glassy/jammed materials E. Weeks
3
Dynamical heterogeneity is ubiquitous! Granular matterColloidal Hard Spheres Repulsive disks Weeks et al. Science 2000Keys et al. Nat. Phys. 2007A. Widmer-Cooper Nat. Phys. 2008
4
Outline Average dynamics and dynamical hetrogeneity of supercooled colloidal HS Temporal fluctuations of the dynamics in jammed/glassy materials Real-space measurements of correlations: ultra-long range spatial correlations and elasticity
5
Equilibrium dynamics of supercooled HS Brambilla et al., PRL 2009 Multispeckle DLS PMMA in decalin/tetralin a ~ 110 nm polidispertsity 12.2% (TEM) (sec) f s (qa=2.75, )
6
dependence of the relaxation time Brambilla et al., PRL 2009 MCT : ~ ( c - ) - c = 0.59, = 2.6 VFT: ~ exp[( 0 - ) - ] 0 = 0.614, = 1 0 = 0.637, = 2
7
Glass/jamming transition in colloidal HS c ~.57-.59 FluidGlass (out of equilibrium) rcp ~.64 c ~.57-.59 Fluid j = rcp ~.64 c ~.57-.59 FluidGlass rcp ~.64 00 MCT Jamming Thermodynamic
8
Dynamical heterogeneity Weeks et al. Science 2000
9
Dynamical heterogeneity Weeks et al. Science 2000 var[f( )] 4 ( ) dynamical susceptibility
10
Dynamical susceptibility in glassy systems Supercooled liquid (Lennard-Jones) Lacevic et al., Phys. Rev. E 2002 4 N var[Q(t)]
11
Dynamical susceptibility in glassy systems Spatial correlation of the dynamics Weeks et al. Science 2000
12
Dynamical heterogeneity: the theoreticians’ trick For colloidal HS at high Berthier et al., J. Phys. Chem. 2007 Goal: calculate 4-point dynamical susceptibility 4 ~ size of rearranged region
13
DH in colloidal HS Berthier et al., Science 2005 ~ ( a) 3 dynamical susceptibility 4 ( ) A useful relationship equilibrium OK at high Berthier et al., J. Phys. Chem.2007 ~ 0.20 – 0.58 (sec)
14
dependence of the max of 4 * High : deviation from MCT Brambilla et al., PRL 2009 MCT ~ ( c - ) -2
15
Outline Average dynamics and dynamical hetrogeneity of supercooled colloidal HS Temporal fluctuations of the dynamics in jammed/glassy materials Real-space measurements of correlations: ultra-long range spatial correlations and elasticity
16
Time Resolved Correlation (TRC) time t lag degree of correlation c I (t, ) = - 1 p p p Cipelletti et al. J. Phys:Condens. Matter 2003, Duri et al. Phys. Rev. E 2006
17
intensity correlation function g 2 ( 1 Average over t degree of correlation c I (t, ) = - 1 p p p Average dynamics g 2 ( 1 ~ f( ) 2
18
intensity correlation function g 2 ( 1 Average over t degree of correlation c I (t, ) = - 1 p p p fixed , vs. t fluctuations of the dynamics Average dynamics g 2 ( 1 ~ f( ) 2 var[c I ( )] ~ ( )
19
(Polydisperse) colloids near rcp Ballesta et al., Nature Physics 2008 PVC in DOP a ~ 5 µm polidispertsity ~33% slightly soft close to rcp multiple scattering (DWS) ~ 10 nm << a
20
Non-monotonic behavior of *( ) Fit: g 2 ( )-1 ~ exp[-( / ) ] relaxation time stretching exponent peak of dynamical susceptibility non monotonic!
21
Non-monotonic behavior of *( ) Competition between: increasing ( as ) increasingly restrained displacement jump size decreases (many events over 0, as ) Model: random events of size Poissonian statistics Quasi-ballistic motion ( ~n p, p = 1.65)
22
Simulating the model volume fraction cell thickness! inverse jump size
23
Outline Average dynamics and dynamical hetrogeneity of supercooled colloidal HS Temporal fluctuations of the dynamics in jammed/glassy materials Real-space measurements of correlations: ultra-long range spatial correlations and elasticity
24
2.3 mm Measuring by Photon Correlation Imaging diaphragm lens object plane image plane focal plane CCD sample = 90° 1/q ~ 45 nm Duri et al., Phys. Rev. Lett. 2009
25
2.3 mm Local, instantaneous dynamics: c I ( t, , r) p(r) p p(r) c I (t, , r) = - 1 Note: t > r = g 2 ( )-1 [g 2 ( )-1] ~ f( ) 2
26
Dynamic Activity Maps Brownian particles g 2 ( )-1~ exp[- / r ], r = 40 s Colloidal gel g 2 ( )-1~ exp[-( / r ) 1.5 ], r = 5000 s c I (t 0, r /200, r) c I (t 0, r /10, r) Movie accelerated 10x Movie accelerated 500x 2 mm
27
Spatial correlation of the dynamics: ~ system size in jammed soft matter! Maccarrone et al., Soft Matter 2010
28
When does infinity? G' > G'' : strain propagation in a predominantly solid-like material Magnitude of G' unimportant (G' onions /G' colloidal gel ~ 6x10 4 !!) Origin of elasticity: entropic (e.g. hard spheres) very small enthalpic (attractive gels, squeezed particles...) system-size
29
Evidence of internal stress relaxation J. Kaiser, O. Lielig,, G. Brambilla, LC, A. Bausch, submitted Dynamics of actin/fascin networks strain field @ late stages of network formation age average strain fieldmicrocopic dynamics
30
Conclusions DH a general feature of glassy/jammed dynamics Supercooled hard spheres: equilibrium dynamics above the (apparent) MCT divergence limited to 5-10a Jammed materials: and may decouple! ~ system size role of the origin of elasticity
31
Thanks to... L. Berthier (LCVN), V. Trappe (Fribourg) Hard spheres G. Brambilla, M. Pierno, D. El Masri (LCVN), A. Schofield (Edinburgh), G. Petekidis (FORTH) TRC A. Duri, P. Ballesta (LCVN), D. Sessoms, H. Bissig (Firbourg) PCI A. Duri, S. Maccarrone (LCVN), D. Sessoms (Fribourg), E. Pashkowski (Unilever) Funding CNES, ACI, ANR, PICS, Unilever
32
Open questions... DH and aging? Origin of the dynamics in (undriven) soft materials
33
Determining the volume fraction dependence of the short-time diffusing coefficient = 0.2 = 1/D s s q 2 Absolute uncertainty: ~4% Relative uncertainty: ~ 10 -4
34
PS gel: time-averaged dynamics g 2 (q, ) - 1 ~ [f(q, )] 2 Fast dynamics: overdamped vibrations (~ 500 nm) Krall & Weitz PRL 1998 Slow dynamics: rearrangements
35
PS gels: q dependence of f and p « compressed » exponential« ballistic » motion
36
PS gel: temporally heterogeneous dynamics tw : average dynamics c I (t w, ) @ fixed temporal fluctuations
37
Length scale dependence of var(c I ) Increasing q Duri & LC, EPL 76, 972 (2006) PS gel 1.1 +/- 0.1
38
Scaling of * * ~ var(n)/ ~ 1/ ~ f ~ 1/q * ~ q
39
Dynamical susceptibility in glassy systems Supercooled liquid (Lennard-Jones) Lacevic et al., Phys. Rev. E 2002 4 N var[Q(t)]
40
Dynamical susceptibility in glassy systems 4 N var[Q(t)] 4 dynamics spatially correlated N regions
41
Dynamical susceptibility in glassy systems Spatial correlation of the dynamics Weeks et al. Science 2000
42
The smart trick applied to colloidal HS t 10 -3 (t)(t) F(t)F(t) Define
43
Dynamical heterogeneity: the theoreticians’ trick For colloidal HS at high Berthier et al., J. Phys. Chem. 2007 Goal: calculate 4-point dynamical susceptibility 4 ~ size of rearranged region
44
Evidence of a growing dynamic length scale ~ 0.20 – 0.58 Berthier et al., Science 2005
45
dependence of the max of 4 * MCT High : deviation from MCT Brambilla et al., PRL 2009
46
2.3 mm Photon Correlation Imaging (PCIm) sample annular slitlens object plane image plane focal plane CCD = 6.4° q = 1 m -1. Duri et al., Phys. Rev. Lett. 2009
47
Spatial correlation of the dynamics
48
Other PCIm geometries diaphragm lens object plane image plane focal plane CCD sample diaphragm lens object plane image plane focal plane CCD beam splitter a)b)
49
Additional stuff on diverging
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.