Download presentation
Presentation is loading. Please wait.
1
Karolina Muszyńska Based on http://www.csun.edu/~dn58412/IS431/IS431_SP13.html
2
Systems Analysis vs. Systems Design Systems Analysis Phases and Tasks User Requirements Discovery Systems Analysis Approaches 2
3
3
4
4 Systems Analysis: development phases in a project that primarily focus on the business problems, i.e., WHAT the system must do in terms of Data, Processes, and Interfaces, independent of any technology that can or will be used to implement a solution to that problem. Systems Design: development phases focus on the technical construction and implementation of the system - HOW technology will be used in the system.
5
5
6
Scope Definition Phase – WHAT PROBLEM Is the project worth looking at to solve problem? Problem Analysis Phase – WHAT ISSUES Is a new system worth building? Requirements Analysis Phase – WHAT REQUIREMENTS WHAT do the users need and want from the new system? Logical Design Phase – WHAT TO DO WHAT must the new system do to satisfy users’ needs? Decision Analysis Phase – WHAT SOLUTION WHAT is the best solution among others? 6
7
7
8
8
9
Task 1.1: Identify Problems, Opportunities, and Directives ◦ Deliverable: Preliminary Problem Statement Task 1.2: Negotiate Preliminary Scope ◦ Deliverable: Statement of Project Scope (boundary of the project) what types of DATA to be studied, what business PROCESSES to be included, how the system INTERFACE with users, locations, and other systems 9
10
Task 1.3: Assess Project Worthiness ◦ Cost/benefit analysis ◦ Decision: approve, cancel, renegotiate the scope Task 1.4: Schedule and Budget Plan for Project ◦ Deliverables: Project Charter – schedule and resource assignment Task 1.5: Present the Project and Plan ◦ Deliverable: Project Charter (participants, problems, scope, methodology, statement of work to be completed, deliverables, quality standards, schedule, budget) 10
11
11
12
12 Problem Analysis Tasks
13
Task 2.1: Study the Problem Domain ◦ DATA: currently stored data, their business terms ◦ PROCESSES: current business events ◦ INTERFACES: current locations and users ◦ Deliverable: definition of system domain/models of Current System Task 2.2: Analyze Problems and Opportunities ◦ Deliverables: updated problem statements and the cause- effect analyses for each problem and opportunities Task 2.3: Analyze Business Processes ◦ Deliverable: current business process models 13
14
Task 2.4: Establish System Improvement Objectives ◦ Deliverable: System Improvement Objectives and Recommendations Report Task 2.5: : Update the Project Plan ◦ Deliverable: updated project plan Task 2.6: Present Findings and Recommendations ◦ Deliverable: system improvement objectives ◦ Decision: continue/adjust/cancel current project 14
15
15
16
16 Requirements Analysis Tasks
17
17 3. Requirements Analysis Tasks Task 3.1: Identify System Requirements ◦ Functional requirements: activities and services provided by a system: business functions, inputs, outputs, stored data. ◦ Nonfunctional requirements: features, characteristics defining a satisfactory system: performance, documentation, budget, ease of use and learn, cost saving, time saving, security ◦ Deliverable: draft functional and nonfunctional requirements: improvement objectives and related input, output, processes, stored data to fulfill the objectives
18
18 3. Requirements Analysis Tasks Task 3.2: Prioritize Requirements ◦ Mandatory vs. desirable requirements ◦ Time boxing: deliver the system in a set of subsequent versions in a time frame. The first version satisfies essential and highest prioritized requirements. Task 3.3: Update the Project Plan ◦ If requirements exceed original vision: reduce the scope or increase the budget ◦ Deliverable: consolidated system requirements (completed requirements and priorities)
19
19
20
20
21
21 Task 4.1: Analyze Functional Requirements ◦ Logical systems models: WHAT the system must do (not HOW) ◦ Build prototypes to establish user interface requirements ◦ Deliverables: Data models (ERD), Process models (DFD), Interfaces models (Context diagram, Use case diagram), Object models (UML diagrams) of the Proposed System Task 4.2: Validate Functional Requirements Completeness check, revisit, make changes and additions to system models and prototypes to assure that requirements are adequately defined. Associate nonfunctional requirements with functional requirements
22
22
23
23
24
24 Task 5.1: Identify Candidate Solutions o Deliverable: candidate systems (solutions) matrix Task 5.2: Analyze Candidate Solutions o Feasibility analysis is performed on each individual candidate without regard to the feasibility of other candidates - technical, operational, economic, schedule feasibilities (TOES)
25
25 Task 5.3: Compare Candidate Solutions o Deliverable: recommended solution Task 5.4: Update the Project Plan o Review and update the latest project schedule and resource assignments o Deliverable: updated project plan Task 5.5: Recommend a Solution Deliverable: System Proposal
26
The system may cost more than projected. The system may be delivered later than promised. The system may not meet the users’ expectations and that dissatisfaction may cause them not to use it. Once in operation, the costs of maintaining and enhancing the system may be excessively high. The system may be unreliable and prone to errors and downtime. The reputation of the IT staff of the team is tarnished because any failure, regardless of who is at fault, will be perceived as a mistake by the team. 26
27
Consistent – requirements are not conflicting or ambiguous. Complete – requirements describe all possible system inputs and responses. Feasible – requirements can be satisfied based on the available resources and constraints. Required – requirements are truly needed and fulfill the purpose of the system. Accurate – requirements are stated correctly. Traceable – requirements directly map to the functions and features of the system. Verifiable – requirements are defined so they can be demonstrated during testing. 27
28
Problem discovery and analysis Requirements discovery Documenting and analyzing requirements Requirements management to handle changes 28
29
Analyzing requirements to resolve problems of: ◦ Missing requirements ◦ Conflicting requirements ◦ Infeasible requirements ◦ Overlapping requirements ◦ Ambiguous requirements Formalizing requirements ◦ Requirements definition document ◦ Communicated to stakeholders or steering body 29
30
A requirements definition document should consist of the following: ◦ The functions and services that the system should provide. ◦ Nonfunctional requirements including the system’s features, characteristics, and attributes. ◦ The constraints that restrict the development of the system or under which the system must operate. ◦ Information about other systems that the system must interface with. 30
31
Sampling of existing documentation, forms, and databases. Research and site visits. Observation of the work environment. Questionnaires. Interviews. Discovery Prototyping. Joint requirements planning (JRP) / Joint application development (JAD) 31
32
Joint requirements planning (JRP) – a process whereby highly structured group meetings (having defined agenda, key representatives) are conducted for the purpose of analyzing problems and defining requirements. (JRP is a subset of a more comprehensive joint application development or JAD technique that encompasses the entire systems development process). 32
33
Model-driven Analysis Structured analysis Information engineering Object-oriented analysis Accelerated Systems Analysis Discovery prototyping Rapid Architected Analysis 33
34
Model-driven Analysis emphasizes the drawing of graphical system models to document and validate both existing and/or proposed systems. Ultimately, the system model becomes the blueprint for designing and constructing an improved system. 34
35
35 Structured Analysis: a PROCESS-centered technique to analyze an existing system and define business requirements for a new system. The models illustrate the system’s components: processes (functions, tasks) and their associated inputs, outputs, and files Information Engineering (IE): a DATA-centered, but process-sensitive technique to plan, analyze, and design information systems. IE illustrate and synchronize the system’s data and processes. Object-oriented Analysis (OOA): a technique that integrates data and process concerns into constructs called OBJECTS. OOA illustrate the system’s objects from various perspectives such as structure and behavior.
36
36 Accelerated Systems Analysis approaches emphasize the construction of prototypes to more rapidly identify business and user requirements for a new system Discovery Prototyping Rapid Architected Analysis
37
37 Discovery Prototyping Discovery Prototyping – a technique used to identify the users’ business requirements by building a small- scale, representative or working model of the users’ requirements in order to discover or verify them. Advantages Prototypes cater to the “I’ll know what I want when I see it” way of thinking that is characteristic of many users and managers Disadvantages Can become preoccupied with final “look and feel” prematurely Can encourage a premature focus on, and commitment to, design Users can be misled to believe that the completed system can be built rapidly using prototyping tools
38
38 Rapid Architected Analysis Rapid Architected Analysis – derive system models from existing systems or discovery prototypes. Reverse Engineering – the use of technology that reads the program code for an existing database, application program, and/or user interface and automatically generates the equivalent system model.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.