Download presentation
Presentation is loading. Please wait.
Published byMelvin Hector Morrison Modified over 9 years ago
1
Giant Magnetoresistance Kómár Péter Solid state physics seminar 25/09/2008
2
2 Types of magnetoresistance O rdinary M agneto R esistance A nisotropic MR G iant MR T unneling MR C olossal MR B allistic MR E xtraordinary MR
3
3 First achievements 1856 Thomson (Lord Kelvin) (AMR) B ║ I → Increase of resistance B ┴ I → Decrease of resistance (max. 5%) 1886 Boltzmann, 1911 Corbino Corbino-disk (OMR)
4
4 Ordinary MR Lorentz force → change of mobility: Lorentz force: velocity of charged particles: Corbino-disk: Effective mobility:
5
5 Corbino-disk IρIρ I’I’ B 0 I B = 0
6
6 Anisotropic MR Angle between I and B R = max. at parallel alignment B ┴ I → OMR Application: magnetic sensors electronic compass traffic sensors non-galvanic current meter B I
7
7 AMR and Hall-effect Ohm’s law: j = σ E,where σ is a matrix Diagonal elements: conductivity + AMR Off-diag. elements: Hall-effect ( j ┴ B ┴ E H )
8
8 Barber’s pole magnetic sensor Barber’s pole: The sensor: permalloy base (Fe 20 Ni 80 ) Au-Al strips current flows in 45° → R(B) linear near 0 (2 a,b) Dr. Andreas P. Friedrich, Helmuth Lemme, "The Universal Current Sensor”, Sensors weekly (May 1, 2000) (2a) (2b)
9
9 Giant MR 1988 Fert & Grünberg (2007 Nobel prize) Multilayered samples (Fe-Cr-Fe) Ferromagnetic. – Antiferromagn. coupling Decrease in resistance of 10% and 50% Photos: U. Montan (http://nobelprize.org/nobel_prizes/physics/laureates/2007/) Albert Fert Peter Grünberg
10
10 Manufacturing multilayered samples 1970s epitaxial growth technology: laser evaporation molecular beam sputtering chemical deposition Features: Si, SiO 2, semiconductor base compatible lattice parameters(!) good reproductivity
11
11 Results of Grünberg et al. I. Fe-Cr-Fe sample: GaAs base (epitxial growth, bcc) AF coupling between Fe-s [100] easy- (EA), [110] hard axis (HA) Checking: MOKE (Magneto- optical Kerr effect) light scattering on spin-waves EA: G. Binasch, P. Grünberg, F. Saurenbach, W. Zinn (1989) „Enhanced magnetoresistance is layered magnetic structures with antiferromagnetic interlayer exchange” Pys. Rev. B Vol 39. No. 7 12 1 [nm] EA HA
12
12 Results of Grünberg et al. II. Change of resistance (T = T RT ) B ║EA: GMR (-1.5%) B ║HA: AMR (-0.13%*) és GMR (-1.5%) d(Fe) = 8 nm → ΔR/R = 3% * 25 nm Fe plate G. Binasch, P. Grünberg, F. Saurenbach, W. Zinn (1989) „Enhanced magnetoresistance is layered magnetic structures with antiferromagnetic interlayer exchange” Pys. Rev. B Vol 39. No. 7EA:HA:
13
13 Results of Fert et al. I. [Fe-Cr] n sample: GaAs base 5 – 60 layers changing d(Cr) (6, 3, 1.8, 1.2, 0.9 nm) → change in coupling of Fe layers: Ferromagnetic (6 nm) Antiferromagnetic (0.9 nm) (T = 4.2 K) M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff (1988) „Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattice” Pys. Rev. Letters Vol. 61, No. 21
14
14 Results of Fert et al. II. Change of resistance (T = 4.2 K) ΔR/R (-50%) and H S (2 T) was measured influence of temperature (T RT : -25%, 1.4 T) EA-HA difference, number of layers, d(Cr) M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff (1988) „Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattice” Pys. Rev. Letters Vol. 61, No. 21 HA EA 60 (0.9nm) 35 (1.2nm) 30 (1.8nm) EA
15
15 Theory of GMR I. RKKY interaction ( Ruderman, Kittel (1954), Kasuya (1956), Yosida (1957) ) Coupling between atomic and conducting electrons (exchange int., 2 nd order perturb.) Based on the Bloch wavefunction applies only for periodic structures F-NF-F arrangement: coupling oscillates! Class for physics of the Royal Swedish Academy, “Discovery of the Giant Magnetoresistance” (9 October 2007)
16
16 Theory of GMR II. Spin-dependent resistance scattering in FM, and at FM/NM interlayer R -1 ~ σ ~ N ( E F ) Fermi-surface changes as an effect of B Class for physics of the Royal Swedish Academy, “Discovery of the Giant Magnetoresistance” (9 October 2007) R↓= R↑R↓ = R↑R↓= R↑R↓ = R↑ N↓ (EF) = N↑ (EF)N↓ (EF) = N↑ (EF)N↓ (EF) = N↑ (EF)N↓ (EF) = N↑ (EF) R - = R ↓ < R ↑ = R + B N↓ (EF) > N↑ (EF)N↓ (EF) > N↑ (EF)N↓ (EF) > N↑ (EF)N↓ (EF) > N↑ (EF)
17
17 Theory of GMR III. Spin-valve d(NM) < λ e → the spin of e - -s is constant ↓ and ↑ parallel conduction channels Class for physics of the Royal Swedish Academy, “Discovery of the Giant Magnetoresistance” (9 October 2007) B
18
18 Theory of GMR IV. Half metals ↓ - conducting, ↑ - insulator (eg. CrO 2 ) spin polarization: 100% Class for physics of the Royal Swedish Academy, “Discovery of the Giant Magnetoresistance” (9 October 2007)
19
19 Application – HDD read heads Construction layers with differing coercivity + AFM layer (Bruce Gurney) R measuring Efficiency 1991. MR 1997. GMR (Stuart Parkin) Magnet Academy, (http://www.magnet.fsu.edu/education/tutorials/magnetacademy/gmr/), IBM Research, (http://www.research.ibm.com/research/gmr.html)
20
20 Tunneling MR Ferromagn. – insulator– ferromagn. 1975: 14%/ - 1982: - / few% 1995: 30% / 18% 2007: >200% Application: spintronics magnetic sensors Class for physics of the Royal Swedish Academy, “Discovery of the Giant Magnetoresistance” (9 October 2007)
21
21 Colossal MR 1993 von Helmolt et al. perovskite-like La-Ba-Mn-O annealing, T = 300 K, B = 7 T |ΔR| / R > 60% (steep start, no saturation) R. von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, K. Samwer (1993) „Giant Negative Magnetoresistance in Perovskitelike La 2/3 Ba 1/3 MnO x Ferromagnetic Films”, Pys. Rev. Letters Vol. 71, No. 14
22
22 Spintronics I. Manipulating both charge and spin Spin sources: GMR, TMR (C urrent I n P lane, C P erpendicular P) Manipulation: Spin Torqe Transfer (spin of current → magnetization of layer) Reading (in semiconductors): light scattering, electroluminescence, spin valve, ballistic spin filtering
23
23 Spintronics II. Application: MRAM (NVM) transistor laser
24
Thank you for the attention!
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.