Presentation is loading. Please wait.

Presentation is loading. Please wait.

CLOCK DISTRIBUTION Shobha Vasudevan. The clock distribution problem Large Chip Area Different flop densities Non-uniform distribution of flops All flops.

Similar presentations


Presentation on theme: "CLOCK DISTRIBUTION Shobha Vasudevan. The clock distribution problem Large Chip Area Different flop densities Non-uniform distribution of flops All flops."— Presentation transcript:

1 CLOCK DISTRIBUTION Shobha Vasudevan

2 The clock distribution problem Large Chip Area Different flop densities Non-uniform distribution of flops All flops need to get clock signal at the same time Power budget Clock routing:hard problem

3 Stages of Clock design Global Routing (matched impedance) Impedance matching at every block Local Routing within every block

4 Iterations of the clock tree First iteration on floorplan

5 Second iteration

6 Assumptions made in initial iterations Flop Distribution not decided LCB placement and distribution not decided LCBs placed at the entry point of “H” in block Matched Impedance at every entry point of global tree in block

7 Third Iteration: Impedance Matching Assumptions: LCBs placed on edge of blocks Internal Routing of clock from LCBs to blocks Uniform distribution of flops in random logic blocks (Control, System and Exceptions)

8 LCB placements and distribution

9 Directives in clock tree design Zero or minimal skew to LCBs Skew budget: 20 ps No routing over arrays (Caches and MMUs) Extensive wiring over Control block Routing through the center for uniformly distributed flop regions.

10 Directives in clock tree design M5 for horizontal lines M6 for vertical lines Gated flops in the LSU, MAC and GPR region

11 Clock Tree Design:Binary Tree Uniform distribution of load Division into clusters of 8-9 LCBs Binary tree with each cluster as a leaf node “Levels” of binary tree as equivalent capacitance points Unbalanced branches of tree balanced by adding equivalent capacitance Balancing capacitance:Extra wire routing

12 Clock tree design:Binary tree

13 Clock tree design

14 Routing issues GCBs placed at root and ends of pink and blue lines (16+4+1) Equivalent capacitances maintained at every level of the tree Wire length and thickness varied to match capacitance

15 Hspice simulation Capacitance and resistance of M5 and M6 factored for every horizontal and vertical branch Balancing capacitance added Skew found for all 47 leaf nodes

16 Waveforms

17 Hspice results:Global Skew

18 Hspice simulation results

19 Skew introducing factors Different capacitances at the leaf nodes (8 LCBs or 9 LCBs) M5 and M6 not accounted for in the routing –Discrepancies in length of wire

20 The BST-DME algorithm Academic tool (Andrew Kahn, UCLA) Uses Divide-Merge-Embed Algorithm Calculates minimum wire length for bounded skew Accepts coordinates of LCBs and their capacitances Baseline Metric

21 Tree coordinates produced by BST

22 To be done Precharge of Caches not routed Plan: – Add capacitive load of precharge LCBs to the corresponding leaf nodes –Route extra wire for the other branches to balance load Timeline: May 1st


Download ppt "CLOCK DISTRIBUTION Shobha Vasudevan. The clock distribution problem Large Chip Area Different flop densities Non-uniform distribution of flops All flops."

Similar presentations


Ads by Google