Download presentation
Presentation is loading. Please wait.
Published byShon Craig Modified over 9 years ago
1
High-entropy random selection protocols Michal Koucký (Institute of Mathematics, Prague) Harry Buhrman, Matthias Christandl, Zvi Lotker, Boaz Patt-Shamir, KoliaVereshchagin
2
2 Random string selection: Alice Bob Alice Bob Goal: Alice and Bob want to agree on a random string r.
3
3 → Measure of randomness: Shannon entropy H( R ) = - r Pr[R = r ] ∙ log Pr[ R = r ]
4
4 Example: random r 1 r 2 … r n/2 Alice random r n/2+1 … r n Bob → output r = r 1 r 2 … r n H( R ) = n if Alice and Bob follow the protocol. H( R ) = n if Alice and Bob follow the protocol. H( R ) n/2 if one of them cheats. H( R ) n/2 if one of them cheats.
5
5 Main results: Random selection protocol that guaranteesH( R ) n – O(1) even if one of the parties cheats. This protocol runs in log* n rounds and communicates O( n 2 ). Random selection protocol that guaranteesH( R ) n – O(1) even if one of the parties cheats. This protocol runs in log* n rounds and communicates O( n 2 ). Three-round protocol that guarantees H( R ) ¾ n and communicates O( n ) bits. Three-round protocol that guarantees H( R ) ¾ n and communicates O( n ) bits.
6
6 Previous work: Different variants Different variants random selection protocol [GGL’95, SV’05, GVZ’06] random selection protocol [GGL’95, SV’05, GVZ’06] collective coin flipping [B’82, Y’86, B-OL’89, AN’90, …] collective coin flipping [B’82, Y’86, B-OL’89, AN’90, …] leader selection [AN’90,…] leader selection [AN’90,…] fault-tolerant computation [GGL’95] fault-tolerant computation [GGL’95] multiple-parties protocols [AN’90,…] multiple-parties protocols [AN’90,…] quantum protocols [ABDR’04] quantum protocols [ABDR’04] different measures different measures statistical distance from uniform distribution statistical distance from uniform distribution entropy entropy
7
7 H( R ) n – O(1) ( , log -1 1/ )-resilience. H( R ) n – O(1) ( , log -1 1/ )-resilience. O( log* n )-rounds, O( n 2 )-communication. [GGL] ( , )-resilience, [GGL] ( , )-resilience, O( n 2 )-rounds, O( n 2 )-communication. [SV] ( , + )-resilience, [SV] ( , + )-resilience, O( log* n )-rounds, O( n 2 )-communication. [GVZ] ( , )-resilience [GVZ] ( , )-resilience O( log* n )-rounds, O( n )-communication. B {0,1} n ( , )-resilience: B; |B| 2 n Pr[r B]
8
8 Our basic protocol: random x 1, …, x n {0,1} n Alice random y {0,1} n Bob random i {1, …, n} → output x i y H( R ) = n if Alice and Bob follow the protocol. H( R ) = n if Alice and Bob follow the protocol. H( R ) n – log n if Alice cheats. H( R ) n – log n if Alice cheats. H( R ) n – O(1) if Bob cheats. H( R ) n – O(1) if Bob cheats.
9
9 Alice cheats, Bob plays honestly: Alice carefully selects x 1, …, x n Alice carefully selects x 1, …, x n Bob picks a random y Bob picks a random y for all i and r, Pr y [ r = x i y ] = 2 -n. for all r, Pr y [ i ; r = x i y ] n 2 -n. H( R ) n – log n. H( R ) n – log n. H( R ) n – O(1) if Bob cheats. H( R ) n – O(1) if Bob cheats.
10
10 Iterating our protocol x 1, …, x m y 1, …, y m’ x 1, …, x m y 1, …, y m’ A B ijijijij AB r’’ = … r = x i r’ r’ = y i r’’ r = x i r’ r’ = y i r’’ → log* n iterations H( R ) n – 3 regardless of who cheats. H( R ) n – 3 regardless of who cheats.
11
11 Cost of our protocol: 2 log* n rounds 2 log* n rounds O( n 2 ) bits communicated Question: How to reduce the amount of communication close to linear?
12
12 Generic protocol: random x {0,1} n Alice random y {0,1} n Bob random i {1, …, n} → output f ( x, y, i ) for some f : {0,1} n {0,1} n {1, …, n} → {0,1} n for some f : {0,1} n {0,1} n {1, …, n} → {0,1} n W.h.p for a random function f W.h.p for a random function f H( R ) n – O( log n ) regardless of cheating.
13
13 Explicit candidate functions: x i yrotation of x i-times. x i yrotation of x i-times. ix + yx, y F k i F ix + yx, y F k i F F = GF(2 log n ) k = n / log n ix + yx, y F i H F ix + yx, y F i H F F = GF(2 n ) |H|=n
14
14 Rotations: For any x and y ( x i y ) ( x j y ) = x i x j = x A ij where A ij has rank n – 1. x random n – 1 H( x A ij ) H( x i y, x j y ) x random n – 1 H( x A ij ) H( x i y, x j y ) H( R ) n – log nwhen Alice cheats H( R ) n /2when Bob cheats H( R ) n /2when Bob cheats
15
15 ¾n-protocol: 1. Pick one half of the string by A-B-A “rotating” protocol and the other one by B-A-B “rotating” protocol, i.e., use the asymmetry in the cheating powers. 2. The “line” protocol ix + y, where x, y [GF(2 n/4 )] k and k = 4 → analysis related to the problem of Kakeya.
16
16 Kakeya Problem: P FkFkFkFk Conj: P contains a line in each direction |P| | F | k ( 1 – c /|F|)
17
17 Open problems: Better analysis of our candidate functions. Better analysis of our candidate functions. Other candidate functions? Other candidate functions? Multiple parties. Multiple parties.
18
18 Alice plays honestly, Bob cheats: For any r 1, r 2, … r n, Pr x [ r 1 = x 1, … r n = x n ] = 2 – n 2 For any r 1, r 2, … r n, Pr x [ r 1 = x 1, … r n = x n ] = 2 – n 2 Pr[ r 1 = x 1 y, … r n = x n y ] 2 n – n 2 where y is a function of the random x 1, x 2, … x n H( x 1 y, …, x n y ) n 2 - n E[[ H( x i y ) ]] n – 1. E[[ H( x i y ) ]] n – 1. H( R ) n – O(1) H( R ) n – O(1)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.