Download presentation
Presentation is loading. Please wait.
Published byPaulina Robinson Modified over 9 years ago
1
NRAO Socorro 05/2009 Radio Continuum Studies of Massive Protostars Peter Hofner New Mexico Tech & NRAO
2
NRAO Socorro 05/2009 Collaborators E. Araya NRAO/UNM S. Kurtz, L. Rodriguez CRyA-UNAM M. Goss, D. Shepherd NRAO H. Linz MPIA R. Cesaroni Arcetri Observatory C. Anderson NMT
3
NRAO Socorro 05/2009 Outline Introduction: DR21 VLA Observations of Massive Protostars: Jets Photoevaporating Disks Accretion Shocks IR and X-Ray Counterparts
4
NRAO Socorro 05/2009 Cygnus at 5 GHz Downes & Rinehart 1966 85 ft single dish telescope at Fort Davis, TX 5GHz, FWHM: 10.8' Many discrete sources: thermal spectra
5
NRAO Socorro 05/2009 Cygnus at 5 GHz Downes & Rinehart 1966 85 ft single dish telescope at Fort Davis, TX 5GHz, FWHM: 10.8' Many discrete sources: thermal spectra DR21
6
NRAO Socorro 05/2009 Compact HII Region Ryle & Downes 1967: Cambridge 1 mile Interferometer: First Aperture Synthesis, 1.4 GHz, FWHM: 30" DR21: the first compact HII region
7
NRAO Socorro 05/2009 Ultracompact HII Regions Harris 1973 Cambridge 5 km Interferometer 5 GHz, FWHM: 3" Component D: Cometary UCHII Region EM= 8.2x10 7 pc cm -6, n e =6.5x10 4 cm -3 Central star: B0
8
NRAO Socorro 05/2009 Surveys for Massive Protostars Selection Criteria: FIR color L > 10 3 L dense, hot molecular gas ‘absence’ of radio continuum > 200 candidates 90 % detection rate of outflows (CO) evolutionary stage of candidates ? Pankonin et al. 2001, Araya et al. 2005, Palla et al. 1991, Molinari et al. 1998, 2000 Sridharan et al. 2002, Beuther et al. 2002
9
NRAO Socorro 05/2009 Radio Continuum Emission Signposts for positions of massive protostars Emission mechanisms: How does the intensity of radio continuum relate to overall luminosity ? Evolutionary state Multiplicity/Cluster vs Accretion Disks
10
NRAO Socorro 05/2009 Radio Continuum Emission Models Dust emission Ionized accretion flows Photoevaporating disks Accretion shocks H, H 2 – e - free-free Spherical or Equatorial Winds Shocks in flows Jets
11
NRAO Socorro 05/2009 Deeply Embedded Sources Molecular Clumps: Size = 1 pc N H = 10 23 cm -2 Hot Molecular Cores: Size = 0.1 pc N H 10 25 cm -2 Predicted Extinction: A V > 1000 cm observations ! Cesaroni et al. 2005
12
NRAO Socorro 05/2009 IRAS 20126+4104 Distance: 1.7 kpc Luminosity: 1.3 10 4 L HMC: T 200 K n H 2 7 10 8 cm -3 Bipolar Molecular Flow: 2 N-S in CO + 30 NW-SE in HCO + Velocity gradient Flow Disk ? Cesaroni et al. 1999 + + + + + + 44 GHz CH 3 OH Masers
13
NRAO Socorro 05/2009 IRAS 20126+4104 Hofner et al. 2007 VLA A-configuration X-band Where is the massive protostar ? a) In between N1 and N2 b) Near peak of N1 c) Somewhere else
14
NRAO Socorro 05/2009 Thermal dust at 3 & 1.3 mm extended dust disk 2.5 M (1500 AU) Ionized gas with density gradient at 3.6, 1.3 & 0.7 cm (< 50 AU) associated with outflow Limit on Disk Mass: < 0.8 M (< 50 AU) IRAS 20126+4104 Hofner et al. 2007
15
NRAO Socorro 05/2009 IRAS 20126+4104 Ionization equilibrium: N1 and N2 not photo-ionized by protostar shock ionization episodic H 2 O masers: 100 km/sec proper motion rotation of molecular jet predicted by magneto- centrifugal jet theory Pudritz et al. 2005 Hofner et al. 2007 N1
16
NRAO Socorro 05/2009 G31.41+0.31 Outflow characteristics: L ~ 20L , M > 15 M T dyn ~ 4 x 10 3 yr CH 3 OH (44.1 GHz ) Distance: 7.9 kpc L IRAS : 2.6 x 10 5 L (06 ZAMS) NH 3 (4,4) Size: 2" – 0.08 pc n(H 2 ) 10 7 cm -3 T= 200 K (CH 3 CN) Cesaroni et al., in prep.Araya et al. 2008
17
NRAO Socorro 05/2009 DR21(OH) MM1: L= 1.7 x 10 4 L , B0.5V ZAMS, M ~ 350 M ,T ~ 60 K MM2: Early B ZAMS, M ~ 570 M , T ~ 30 K Davis et al. 2007 Araya et al. 2009
18
NRAO Socorro 05/2009 Photoevaporating Accretion Disks Hollenbach et al. 1994, Yorke et al. 1996, Lizano et al. 1996, Lugo et al. 2004, Originally developed for UCHII/HCHII regions Diffuse Ionization Static ionized atmosphere within gravitational radius r g Photoevaporative flow for r > r g
19
NRAO Socorro 05/2009 Orion Source I Reid et al. 2007 Orion KL Source I d=414 pc VLA: SiO J=1-0, v=0, 1, 2 7mm continuum FWHM: 30 mas Ionized accretion disk (+ Jet ?) H2OH2O
20
NRAO Socorro 05/2009 Other Candidates Gibb et al. 2007 CO Flow S140-IRS1 VLA 7mm S106-IR MERLIN 1.3cm
21
NRAO Socorro 05/2009 Accretion Shocks Neufeld et al. 1994, 1996 Supersonic Infall: v s = 5 – 100 km/sec Pre-Shock Densities: n H = 10 7.5 – 10 12 cm -3 Ionized pre/post-shock layer cm/mm free-free emission
22
NRAO Socorro 05/2009 Accretion Shocks Neufeld et al. 1994, 1996 High optical depths High brightness temperatures
23
NRAO Socorro 05/2009 Accretion Shocks Neufeld et al. 1994, 1996 Assumptions: Cassen & Moosman 1981 Infall Solution Accretion Rate: 10 -4 M /year Accretion Radius: 10 AU Central Mass: 10 M Predicted fluxes: 1.2 Jy (X) dist. = 5 kpc (4 mas) 31 Jy (Q) 7.5 Jy (X) dist. = 2 kpc (10 mas) 200 Jy (Q)
24
NRAO Socorro 05/2009 IR Counterparts Precise Positions of massive protostars: adaptive optics, w/ laser guide star: similar resolution Unclear why detectable at NIR: massive dust condensations predict A V > 1000 IRAS18566: SPITZER/IRAC VLA-7mm/2MASS-K Araya et al. 2007 Anderson et al. in prep.
25
NRAO Socorro 05/2009 X-Ray Counterparts IRAS20126: CHANDRA VLA –A conf. Anderson et al., in prep. 0.5 – 8 keV 3.6 cm
26
NRAO Socorro 05/2009 EVLA Jy sensitivity across a wide range of wavelengths Observe entire sample of massive protostars Map brightness distribution, SED Relative duration of different physical scenarios Correlate with other age indicators: Evolution However: want matching resolution: e-MERLIN
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.