Download presentation
Presentation is loading. Please wait.
Published byAngela Drusilla Mason Modified over 9 years ago
1
Surface Density Structure in Outer Region of Protoplanetary Disk Jul. 24th 2014 Nobeyama UM Eiji Akiyama (NAOJ) Munetake Momose, Yoshimi Kitamura, Takashi Tsukagosh, Shota Shimada, Masahiko Hayashi, Shin Koyamatsu
2
Importance of Outer Region of the Disk How is disk gas cleared ? How can planets form at a distant from a central star ? Kalas et al. 2009 Fomalhaut r = 119 AU
3
Power Law Disk Model Power law description in surface density was introduced in the minimum mass solar nebula. (e.g. Kusaka et al. 1970, Weidenschilling 1977, Hayashi et al. 1985)
4
Discrepancy between Dust & Gas Emission Discrepancy in disk size has emerged between the extent of the dust continuum and molecular gas emission. Dust continuum: smaller size Gas emission: larger size Examples ・ AB Aur (Pietu et al. 2005) Continuum (2.8, 1.4mm): 350±30 AU 12 CO(J=2-1): 1050±10 AU ・ HD 163296 (Isella et al. 2007) Continuum (0.87-7mm) : 200±15 AU 12 CO(J=3-2) etc: 540±40 AU Is the power law description really appropriate ?
5
Similarity Solution Disk Model Surface density is based on the theory of viscous evolution ( Lynden-Bell & Pringle 1974, Hartmann et al. 1998) Radial temperature distribution Same as power-law disk model power-law similarity x[AU] y[AU] x[AU] log n H2 [1/cc] Log r [AU] Log Σ(r) [g cm -2 ] r out power-law similarity distance where Σ(r) starts decreasing exponentially normalized surface density C2C2
6
Examples of Similarity Solution velocity [km s -1 ] HD163296 R.A. Dec. 2 4 6 8 2 4 6 8 2 4 6 8 Power Similarity Hughes et al. 2008 ALMA SV band7 color: CO(3-2) contour: continuum 10 100 1000 r [AU] CO(3-2) continuum r c = 125 AU de Gregorio-Monsalvo et al. 2013 10 - 2 10 - 3 10 - 4 10 - 1 10 -2 10 -3 10 -0 CO(3-2) [Jy/beam] continuum [Jy/beam] 10 8 6 4 2 Vel. [km/s] CO(3-2) 2 0 4 6 2 4 6 offset [arcsec]
7
Gallery of Protoplanetary Disks (Radio) Andrews et al. 2011 Mathew et al. 2012 Brown et al. 2012 Cieza et al. 2012 Isella et al. 2010
8
Object Details distance [pc]SP typeM * [M ☉ ]M disk [M ☉ ]inclination [deg.] 140A2/32.30.02938 MWC 480 is bright Herbig Ae star with primordial disk. Many people have observed and basic properties are well known. No complex structures → easy to analyze the structure Kusakabe et al. 2012 Acke & van den Ancker 2004 No complex structures log λ[μm] log λF λ [erg cm -2 s -1 μm] H-band Subaru
9
Observation Details Telescope Reciever NRO45, ASTE BEARS, T100H/V, CATS345 Lines 12 CO(1-0), 13 CO(1-0), C 18 O(1-0), 12 CO(3-2), 13 CO(3-2) Frequency109 – 115 GHz, 330 – 345 GHz Spatial res.~ 15” (~2100 AU), ~ 23”(~3200 AU) Velocity res.~ 0.055 – 0.1 km/s Integ. time4.2h (2.0h on source) System temp.140 -350 K
10
Model Parameters ・ Fixed parameters : The results obtained by other observations applied ・ Free parameters : Best fit parameters are searched ・ X ( 12 CO) = 10000 ・ Local Thermal Equilibrium (LTE) ・ X ( 12 CO) / X ( 13 CO) = 60 ・ Hydrostatic Equilibrium ・ X ( 13 CO) / X ( C 18 O) = 5 ・ Outer radius : r out (C 2 ) ・ Temperature : T 100 ・ Surface density : Σ 100 (C 1 ) distance [pc] M * [M ☉ ] inclination [deg.] pq HD1632961402.3381.00.5
11
Model Fit Results Similarity solution shows better fit in multi-CO line observation → It supports viscous evolution Akiyama et al. 2013
12
Observation Details Lines 12 CO(2-1), 13 CO(2-1), C 18 O(2-1) Frequency219 – 230 GHz Spatial res.~ 0.68” x ~ 0.55” FoV~ 27” Proj. baseline16 – 400 m Velocity res.0.3 – 0.66 km/s Integ. time4.2h (2.0h on source) System temp.60 -180 K (0.8mm water vapor) ALMA SV band 6
13
Results (ALMA SV band 6) 12 CO(2-1) 13 CO(2-1) C 18 O(2-1) 0th1st2nd Akiyama et al. submitted
14
Results (ALMA SV band 6) 12 CO(2-1) 13 CO(2-1) C 18 O(2-1) 0th1st2nd Akiyama et al. submitted Vlsr [km s-1]Flux Density [Jy] 12CO(2-1)13CO(2-1)C18O(2-1)
15
Successful Example of SS Model 1 Akiyama et al. submitted CO (2-1) 13 CO (2-1)C 18 O (2-1) PL SS 700
16
Successful Example of SS Model 2 r out = 700AU, p=1.0, θ=45° T 100 [K] Σ 100 [gm s -1 ] 12 CO(J =3-2) 13 CO(J =3-2) 12 CO(J =1-0) 13 CO(J =1-0) 0.001 12 CO(J =3-2) 13 CO(J =1-0) 13 CO(J =3-2) 40 30 20 10 0 0 0.15 0.3 12 CO(J =1-0) 1.5 3 0 -10 0 10 20 30 Tmb [K] 3 1.5 0 -1.5 Tmb [K] 40 -0.15 0 0.15 0.3 20 15 10 5 0 -5 20 15 10 5 0 -5 -10 0 2 4 6 8 10 12 Vlsr [km s-1]
17
Summary 1.MWC 480 was selected for its simple disk structure. 2.Similarity solution model is based on the viscous evolution. → Surface density tapers off gradually with distance. 3.Similarity solution reproduces the observation ・ Verified by NRO45/ASTE (single dish) and ALMA SV (interferometry) and data. ・ Similarity solution model is more suitable than power law for describing disks. → The disk evolves via viscous diffusion
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.