Presentation is loading. Please wait.

Presentation is loading. Please wait.

On black hole microstates Introduction BH entropy Entanglement entropy BH microstates Amos Yarom. Ram Brustein. Martin Einhorn.

Similar presentations


Presentation on theme: "On black hole microstates Introduction BH entropy Entanglement entropy BH microstates Amos Yarom. Ram Brustein. Martin Einhorn."— Presentation transcript:

1 On black hole microstates Introduction BH entropy Entanglement entropy BH microstates Amos Yarom. Ram Brustein. Martin Einhorn.

2 Geometry 

3 General relativity G  =T  =0 r=2M r=0 Coordinate singularity Spacetime singularity

4 Coordinate singularities x y r  x=r cos  y=r sin 

5 Kruskal extension Previous coordinates: t x r=2M r=0 t=0 t=1/2 t=1 t=3/2 x

6 Kruskal extension t x r=2M r=0 

7 Black hole thermodynamics J. Beckenstein (1973) S. Hawking (1975) S  A T H =1/(8  M) S = ¼ A S =0

8 What does BH entropy mean? BH Microstates Horizon states Entanglement entropy

9 1 2 Results: 50% ↑ 50% ↓ Results  ≠0: 50% ↑ 50% ↓ 1 2 

10 Entanglement entropy S=0 S  =Trace (   ln  1 )=ln2 S  =Trace (   ln  2 )=ln2 All |↓  22  ↓| elements 1 2

11 The vacuum state |0  t x r=0 r=2M

12 Finding  1  (x,0)=  (x) x t  ’(x)  ’’(x) Tr 2  (  ’  ’’   1 (  ’ 1,  ’’ 1 ) =  1  ’ 1  ’’ 1    Exp[-S E ] D   (x,0 + ) =  ’ 1 (x)  (x,0 - ) =  ’’ 1 (x)  (x,0 + ) =  ’ 1 (x)  2 (x)  (x,0 - ) =  ’’ 1 (x)  2 (x)   Exp[-S E ] D  D  2  (x,0 + )=  ’(x)  (x,0 - )=  ’’(x)  (x,0 + )=  ’(x)  (x,0 - )=  ’’(x)

13 What does BH entropy mean? BH Microstates Horizon states Entanglement entropy √ x t  ’ 1 (x)  ’’ 1 (x)  ’| e -  H |  ’’  Kabbat & Strassler (1994), R. Brustein, M. Einhorn and A.Y. (to appear) Finding  1  1  ’ 1  ’’ 1    Exp[-S E ] D   (x,0 + ) =  ’ 1 (x)  (x,0 - ) =  ’’ 1 (x)   

14 Counting of microstates (Conformal) field theory Curved spacetime Quantized gravity String theory

15 AdS/CFT AdS spaceCFT Minkowski space deSitter Anti deSitter  O Z(  b =  0 )  Exp(    O dV)  = Maldacena (1997)

16 S BH =A/4 S=A/3 Semiclassical gravity: R>>  ’ Free theory:  0 S/A 1/R AdS BH Entropy S. S. Gubser, I. R. Klebanov, and A. W. Peet (1996) Anti deSitter +BH AdS/CFT CFT, T>0 What does BH entropy mean? BH Microstates Horizon states Entanglement entropy √ √

17 AdS BH AdS/CFT CFT  CFT, T=0 CFT, T>0 ? |0  Maldacena (2003)

18 Generalization Field theory BH spacetime R. Brustein, M. Einhorn and A.Y. (to appear)

19 Generalization Field theory BH spacetime f(r 0 )=0   1  ’ 1  ’’ 1    Exp[-S E ] D   (x,0 + ) =  ’ 1 (x)  (x,0 - ) =  ’’ 1 (x)  ’| e -  H |  ’’ 

20 Generalization BH spacetime Field theory ? /2

21 Generalization BH spacetime Field theory Field theory  Field theory /2

22 Summary BH entropy is a result of: –Entanglement –Microstates Counting of states using dual FT’s is consistent with entanglement entropy.

23 End

24 Entanglement entropy S 1 =S 2 Srednicki (1993)

25 AdS/CFT (example) Witten (1998) Massless scalar field in AdS An operator O in a CFT Exp ( )


Download ppt "On black hole microstates Introduction BH entropy Entanglement entropy BH microstates Amos Yarom. Ram Brustein. Martin Einhorn."

Similar presentations


Ads by Google