Download presentation
Presentation is loading. Please wait.
Published byNora McCormick Modified over 9 years ago
1
On black hole microstates Introduction BH entropy Entanglement entropy BH microstates Amos Yarom. Ram Brustein. Martin Einhorn.
2
Geometry
3
General relativity G =T =0 r=2M r=0 Coordinate singularity Spacetime singularity
4
Coordinate singularities x y r x=r cos y=r sin
5
Kruskal extension Previous coordinates: t x r=2M r=0 t=0 t=1/2 t=1 t=3/2 x
6
Kruskal extension t x r=2M r=0
7
Black hole thermodynamics J. Beckenstein (1973) S. Hawking (1975) S A T H =1/(8 M) S = ¼ A S =0
8
What does BH entropy mean? BH Microstates Horizon states Entanglement entropy
9
1 2 Results: 50% ↑ 50% ↓ Results ≠0: 50% ↑ 50% ↓ 1 2
10
Entanglement entropy S=0 S =Trace ( ln 1 )=ln2 S =Trace ( ln 2 )=ln2 All |↓ 22 ↓| elements 1 2
11
The vacuum state |0 t x r=0 r=2M
12
Finding 1 (x,0)= (x) x t ’(x) ’’(x) Tr 2 ( ’ ’’ 1 ( ’ 1, ’’ 1 ) = 1 ’ 1 ’’ 1 Exp[-S E ] D (x,0 + ) = ’ 1 (x) (x,0 - ) = ’’ 1 (x) (x,0 + ) = ’ 1 (x) 2 (x) (x,0 - ) = ’’ 1 (x) 2 (x) Exp[-S E ] D D 2 (x,0 + )= ’(x) (x,0 - )= ’’(x) (x,0 + )= ’(x) (x,0 - )= ’’(x)
13
What does BH entropy mean? BH Microstates Horizon states Entanglement entropy √ x t ’ 1 (x) ’’ 1 (x) ’| e - H | ’’ Kabbat & Strassler (1994), R. Brustein, M. Einhorn and A.Y. (to appear) Finding 1 1 ’ 1 ’’ 1 Exp[-S E ] D (x,0 + ) = ’ 1 (x) (x,0 - ) = ’’ 1 (x)
14
Counting of microstates (Conformal) field theory Curved spacetime Quantized gravity String theory
15
AdS/CFT AdS spaceCFT Minkowski space deSitter Anti deSitter O Z( b = 0 ) Exp( O dV) = Maldacena (1997)
16
S BH =A/4 S=A/3 Semiclassical gravity: R>> ’ Free theory: 0 S/A 1/R AdS BH Entropy S. S. Gubser, I. R. Klebanov, and A. W. Peet (1996) Anti deSitter +BH AdS/CFT CFT, T>0 What does BH entropy mean? BH Microstates Horizon states Entanglement entropy √ √
17
AdS BH AdS/CFT CFT CFT, T=0 CFT, T>0 ? |0 Maldacena (2003)
18
Generalization Field theory BH spacetime R. Brustein, M. Einhorn and A.Y. (to appear)
19
Generalization Field theory BH spacetime f(r 0 )=0 1 ’ 1 ’’ 1 Exp[-S E ] D (x,0 + ) = ’ 1 (x) (x,0 - ) = ’’ 1 (x) ’| e - H | ’’
20
Generalization BH spacetime Field theory ? /2
21
Generalization BH spacetime Field theory Field theory Field theory /2
22
Summary BH entropy is a result of: –Entanglement –Microstates Counting of states using dual FT’s is consistent with entanglement entropy.
23
End
24
Entanglement entropy S 1 =S 2 Srednicki (1993)
25
AdS/CFT (example) Witten (1998) Massless scalar field in AdS An operator O in a CFT Exp ( )
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.