Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chapter 3 Motion in a line (linear motion). Motion Vocabulary A cat moves a distance of 10 meters (how far?) in 5 seconds. What information do you KNOW.

Similar presentations


Presentation on theme: "Chapter 3 Motion in a line (linear motion). Motion Vocabulary A cat moves a distance of 10 meters (how far?) in 5 seconds. What information do you KNOW."— Presentation transcript:

1 Chapter 3 Motion in a line (linear motion)

2 Motion Vocabulary A cat moves a distance of 10 meters (how far?) in 5 seconds. What information do you KNOW from this? What can you calculate? Speed (technically average speed) = dist/time –Most common units: meters/sec (or miles/hour) Velocity – speed AND direction –This is the quantity scientists use. Velocity tells us how fast things are moving with extra detail direction.

3 Speed/velocity questions Questions: a car moves 20 meters/sec. How far does it go in: –3 seconds? _______________ –10 seconds? _______________ –1 minute? _______________ –1 hour? _______________ Describe how something could move with constant speed but CHANGING velocity.

4 When you’re sitting completely still, are you moving? 1.Yes 2.No 1234567891011121314151617181920 2122232425262728293031323334353637383940 414243444546474849505152535455

5 Debrief Talk to your neighbors: –Did you get it right? –Why or why not? –Make sure you understand.

6 Motions Daily motion – Earth’s rotation once per __ –Speed varies: ___ for Santa, 1000 mph for Ecuador 850 mph for Los Angeles Yearly motion – Earth’s revolution once per __ –Distance: 1AU = ____ –Speed: average ~66,000 mph –Direction “tilted” 23.5˚ relative to rotation. Sun orbits Milky Way center once per 200-230 Million yr –28,000 light-year radius, speed ~500,000 mph –Studying this motion  dark matter discovered Galaxies moving relative to each other. –Nearest galaxies get closer to us. Most move away.

7 Acceleration Acceleration – any change in velocity –Changing speed (getting faster OR slower) –AND/OR Changing direction In everyday English, slowing down is called “decelerating” but physicists use “accelerating” to mean ANY form of acceleration/deceleration. Give some examples of things that are “accelerating” in the physics sense.

8 Velocity vs. acceleration Identify the following as velocity (arm points right) or acceleration (arm points left) –Going 55 mph –Using the gas pedal on your car –Rolling in a straight line –Using the brakes on your car –Using the steering wheel on your car –Running 10 meters per second –Things falling due to gravity. –Things thrown upwards on their way up to the top

9 Which does the human body feel? 1234567891011121314151617181920 21222324252627282930 1.Velocity 2.Acceleration

10 Debrief Talk to your neighbors: –Did you get it right? –Why or why not? –Make sure you understand. ** For this question, the same is true for ALL objects. They FEEL acceleration.

11 Accelerating – changing velocity When things accelerate, they change velocity in a predictable way –Cars go from zero to ____ in ____ seconds. –That’s an acceleration of _______________ –Sprinters run at a top speed of _________ meters/sec (or _____mph). –How long does it take to speed up? (Or slow down?) –Calculate the accelerations.

12 Airplanes travel at a constant speed of 400 miles/hr. Is the airplane accelerating? 1234567891011121314151617181920 21222324252627282930 1.Yes 2.No 3.Not enough information provided

13 Debrief Talk to your neighbors: –Did you get it right? –Why or why not? –Make sure you understand.

14 Two track demo See page 57, question 40. Clicker question coming: –Which reaches end of track first?

15 Which ball reaches the end of the track first? 1234567891011121314151617181920 2122232425262728293031323334353637383940 414243444546474849505152535455 1.Same time 2.Ball on a straight path 3.Ball on the downhill/uphill path

16 Debrief Talk to your neighbors: –Did you get it right? –Why or why not? –Make sure you understand.

17 Acceleration changing an object’s speed Ramp demo Imagine something accelerates at a constant rate of 2 miles/hr per second of motion. It starts at rest. Work with your neighbor. –Initially, its speed is _____________ –After 1 second, its speed is ____________ –After 2 second, its speed is ____________ –After 3 second, its speed is ____________ –After 10 secs, its speed is ____________ –After 2000 secs, its speed is ____________ –Write a rule for the speed after “T” seconds. –After you write your rule, notice the textbook gives an equation on page 47.

18 A super-fast car and truck start at the same place. The car goes 100 m/s (220 miles/hr) always. The truck starts at rest and accelerates 1 m/s per HOUR. Will the truck ever catch the car? 1234567891011121314151617181920 21222324252627282930 1.Yes 2.No 3.Not enough information is provided

19 Debrief Talk to your neighbors: –Did you get it right? –Why or why not? –Make sure you understand.

20 When the truck catches the car, which vehicle covered more distance? 1234567891011121314151617181920 21222324252627282930 1.Car 2.Truck 3.Same 4.Not enough information is provided

21 Debrief Talk to your neighbors: –Did you get it right? –Why or why not? –Make sure you understand.

22 When the truck catches the car, which vehicle is moving faster? 1234567891011121314151617181920 21222324252627282930 1.Car 2.Truck 3.Same 4.Not enough information is provided

23 Debrief Talk to your neighbors: –Did you get it right? –Why or why not? –Make sure you understand.

24 Extra credit question – due Monday For 3 points, determine how much time it takes the car to catch the truck. Do NOT use any equations other than this one: –Velocity = acceleration * time –(You may not even need this equation) Your answer must be conceptual (i.e. words) not mathematical. Reminder: The car goes 100 m/s always. The truck starts at rest and accelerates 1 m/s per HOUR. Due Monday

25 Calif. Science Standards for motion From California Science Standards, grade 2: –Students know the way to change how something is moving is by giving it a push or a pull. The size of the change is related to the strength, or the amount of force, of the push or pull. And from grade 8: –Students know the velocity of an object must be described by specifying both the direction and the speed of the object. –Students know changes in velocity may be due to changes in speed, direction, or both.

26 Gravity near ground Free fall –Toss something up, what happens on way up? –Drop something, what happens on way down? When things fall, measure same accel. for: –speeding up –slowing down. –10 meters/sec (=22 mph) per second of falling. Paper/pen experiment SAME GRAVITATIONAL ACCELERATION for ALL objects, all masses, everywhere near ground.* –*Unless there are other forces, such as _____________ –Then we’re dealing with NET force, not gravity’s force. Galileo observed this (in Pisa). Galileo’s observations helped Newton formulate ideas.

27 From Apollo 15 mission Men on the Moon Show the hammer-feather movie (Vakil’s computer  Videos  Planets & Moons  hammer)

28 Gravitational acceleration g = 10 m/s per second or 22 mph per sec Drop something from rest. How fast will it be moving after: –1 sec _______________ –2 sec _______________ –10 sec _______________ –T sec _______________* *After writing your rule, compare yours to the book’s version on p. 48 –10 m/s 2 (on Earth’s surface) is abbreviated “g”** **More precisely it’s 9.8 m/s 2.

29 Free fall questions What happens to an object if you drop it at rest? –How quickly? If you toss something straight upwards –What happens on the upwards part of motion? How quickly? –What happens on the downward part? How quickly?

30 How fast is something moving at the top of the motion after being thrown upwards? The answer depends on: 1234567891011121314151617181920 21222324252627282930 1.Nothing – it is moving w/ speed=zero 2.how fast it was thrown 3.How long you wait 4.how fast thrown & how long you wait

31 What is the acceleration at the top of the motion after being thrown upwards? 1234567891011121314151617181920 21222324252627282930 1.Zero 2.g 3.Not enough information provided

32 You have two spheres of equal size and smoothness, and you can ignore air resistance. One is heavy, the other much lighter. You hold one in each hand at the same height above the ground. You release them at the same time. What will happen? 1.The heavier one will hit the ground first. 2.They will hit the ground at the same time. 3.The lighter one will hit the ground first. 1234567891011121314151617181920 2122232425262728293031323334353637383940 41424344454647484950

33 Same objects. How does the acceleration of gravity compare? 1.The heavier one has a larger gravitational acceleration. 2.They have the same gravitational acceleration. 3.The lighter one has a larger gravitational acceleration. 1234567891011121314151617181920 2122232425262728293031323334353637383940 41424344454647484950

34 Same objects. How does the force of gravity compare? Be careful! 1.The heavier one has a stronger gravitational force. 2.They have the same gravitational force. 3.The lighter one has a stronger gravitational force. 1234567891011121314151617181920 2122232425262728293031323334353637383940 41424344454647484950

35 California Elementary School Science Standards for gravity From California Science Standards, hgih school a.Students know the relationship between the universal law of gravitation and the effect of gravity on an object at the surface of Earth.

36 Summary 1.Definitions: speed, velocity, acceleration 2.Differences between these three 3.Simple computations of speed & accel. 4.Gravity is an acceleration 5.All things freefall with same acceleration


Download ppt "Chapter 3 Motion in a line (linear motion). Motion Vocabulary A cat moves a distance of 10 meters (how far?) in 5 seconds. What information do you KNOW."

Similar presentations


Ads by Google