Download presentation
Presentation is loading. Please wait.
Published byCarmel McCormick Modified over 9 years ago
1
At the End of the Nuclear Map Yuri Oganessian Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia 2 nd Conference “Advance in Radioactive Isotope Science ARIS 2014 June 1-6, 2014 in Tokyo, Japan
2
92 U / T α = 4.5·10 9 y Chart of nuclides 82 Pb / stable Bi Th 102 No / T α ≈ 2 s about 50 years ago… Macroscopic theory (Liquid Drop Model) Nuclear instability against spontaneous fission T SF = 2·10 -7 y T SF = 10 16 y Yuri Oganessian. ARIS 2014, June 5, 2014 in Tokyo, Japan
3
Island of Stability shoal peninsula continent New lands Neutron number P r o t o n n u m b e r 100110 120 130140 150 160 170 180 190 120 110 100 90 80 70 Island of Stability Shoal New lands Macro-microscopic theory Peninsula Continent Sea of Instability about 40 years ago… -5051015LogT 1/2 s 1µs 1s1h 1y 1My A. Sobiczewski et al (2003)
4
SHE Pb neutrons → protons → Reactions of Synthesis LDM + Shell Corrections Cold fusion 1974 - 2012 (38y) 6 elem. Neutron capture Hot fusion Hot fusion 1940 - 1955 1955 - 1975 (15y) 8 elem. (20y) 6 elem. Act. + 48 Ca 1989 - 2010 (10y) 6 elem. Historical background: After discovery of nuclear fission 75 - years ago - 26 new chemical elements heavier than uranium was synthesized Yuri Oganessian. ARIS 2014, June 5, 2014 in Tokyo, Japan A. Sobiczewski, K. Pomorski, PPNP 58, 292, 2007
5
Rf 160155165170 175 180 185 190 CN neutron number Sg Hs Ds Cn 10 -32 10 -34 10 -36 10 -38 Total EVRs cross sections (cm 2 ) P. Moller et al., PR., C79, 064304 (2009) cold fusion 208 Pb, 209 Bi + 50 Ti,…… 70 Zn E x = 12 - 15 MeV х = 1 112 110 106 104 113 108 Fission barrier heights in MeV SHE 116 118 112 113 114 115 117 Cn Fl Lv Fl Hs 48 Ca hot fusion 48 Ca-induced reactions E x = 35 - 45 MeV х = 3 – 4 Island
6
10 6 10 4 10 2 10 0 10 -2 100 105110 115120 Atomic number 150 200 250 300 Total EVR’s cross sections (pb) Z 1 ·Z 2 /(A 1 1/3 +A 2 1/3 ) Cold fusion E x =12-15 MeV SHE Limitation of fusion 10 6 10 4 10 2 10 0 10 -2 100 105110 115 120 Atomic number 0.0 -0.5 -1.5 -2.0 0.5 B n – B f (MeV) Total EVR’s cross sections (pb) Hot fusion E x ≈ 40 MeV SHE CN survival ~ exp(B n -B f ) K. Siwek-Wilczy´nska et al., PR C86, 014611 (2012) Yuri Oganessian. ARIS 2014, June 5, 2014 in Tokyo, Japan
7
Dubna Gas-Filled Recoil Separator Transmission for: EVR 35-40% target-like 10 -4 -10 -7 projectile-like 10 -15 -10 -17 Registration efficiency: for α-particles 87% for SF single fragment 100% two fragments ≈ 40% beam 48 Ca Experimental technique target 1998 - 2007
8
117 293 1 10.7–11.4 MeV Δy=y 1 -y 0 ≤ 2.2 mm ≤ 132 ms E R =7–15 MeV y=y 0 48 Ca 249 Bk target the beam was switched off SF 2 3 low-background detection scheme focal plane detector array separator Yu. Oganessian 2010 9.79 MeV 22.09 mm 0.24 s 189.4 MeV 22.01 mm 31.66 s 10.25 MeV 22.20 mm 0.51s 10.91 MeV 22.16 mm 53.01 ms 9.96 MeV 22.04 mm 115 289 113 285 111 281
9
1680 h 80 h 10 -3 /s 2·10 -6 /s per strip / position beam-on beam-off 213 Po 212 Po (α+e - ) Spectra of the α-like signals 211 Po 214 Po beam-off beam-on 252,254 Cf 80 h 1680 h 7·10 -5 /s Spectra of fission-like signals 1.5·10 -7 /s 111 SF 113 115 117 α1α1 α2α2 α3α3 212 Po Yu. Oganessian 2010 Yuri Oganessian / Seminar at Tokyo Institute of Technology, June 04, 2014, Tokyo, Japan Expected numbers of random sequences ≤ 5·10 -10
10
Decay Properties of SHN
11
244 Pu + 48 Ca 4n3n 5n 244 Pu + 48 Ca 3n 4n 238 U + 48 Ca 3n 4n 242 Pu + 48 Ca 3n2n 4n 249 Cf + 48 Ca 245 Cm + 48 Ca 2n 3n Decay chains N=26 26 19 10 3 Even-Z Nuclei Z=118 116 114 112 110 108 106 104
12
249 Cf + 48 Ca 242 Pu+ 48 Ca 244 Pu+ 48 Ca Energy spectra of alpha particles Yuri Oganessian. ARIS 2014, June 5, 2014 in Tokyo, Japan 1999 - 2005 Even Z Nuclei
13
Alpha - decay Theory I. Muntian, Z. Patyk, and A. Sobiczewski Phys. At. Nucl. 66, (2003) Z-even Exp. Z-even
14
Spontaneous fission SHN even-even isotopes Yuri Oganessian. ARIS 2014, June 5, 2014 in Tokyo, Japan SF critical zone R. Smolańczuk, PR. C 56 (1997) 812
15
Fl 200 210 130 SHE β-stability line Lv Congress of IUPAC -2011 Yuri Oganessian. ARIS 2014, June 5, 2014 in Tokyo, Japan
16
[2] [1] [31] [2] 2n[4] 4n[10] [3] February, 2012 GARISDGFRS Yuri Oganessian. ARIS 2014, June 5, 2014 in Tokyo, Japan Odd-Z Nuclei
17
[3] [73] [2] 2n[4] 4n[16] [6] June, 2013 GARISDGFRS + TASCA K. Morita this session
18
Odd Z Nuclei An excellent case for spectroscopic studies of the SHN in coincidence experiments D. Rudolf at this session Yuri Oganessian. ARIS 2014, June 5, 2014 in Tokyo, Japan 2003 - 2012
19
A/ZSetupLaboratoryPublications 283 112SHIPGSI DarmstadtEur. Phys. J. A32, 251 (2007) 283 112COLDPSI-FLNR (JINR)NATURE 447, 72 (2007) 286, 287 114BGSLBNL (Berkeley)P.R. Lett. 103, 132502 (2009) 288, 289 114 292, 293 116 TASCA SHIP GSI – Mainz GSI Darmstadt P.R. Lett. 104, 252701 (2010) Eur. Phys. J. A48, 62 (2012) 287, 288 115 293, 294 117 TASCA GSI – Mainz P.R. Lett. 111, 112502 (2013) P.R. Lett. 112, 172501 (2014) 292, 293 116GARISRIKEN TokyoAccelerator Progress Rep. (2013) Confirmations of DGFRS data 2007 - 2014
20
1.1h Island of over 50 nuclei produced in Act.+ 48 Ca reactions Nuclear Mainland Fission is terminating the decay chains at the Islan d 29 s 266 Lr 11 h 1.1h 271 Hs 4 s 277 Hs 3 ms 267 Sg 2min 2 s ~1 h ~ 0.02 pb ~1 pb ~10 pb
21
How to build a bridge between heavy and super-heavy nuclei Island 112 114 116 118 110 108 Z=106 112 Mainland 117 115 113
22
Island 118 115 114 113 111 110 109 108 107 106 105 104 116 neutrons protons 244 Pu+ 48 Ca t SF > 5 s σ ≈ 6-7 pb 4n How to build a bridge between heavy and super-heavy nuclei 278 112 233 U( 48 Ca,3n) One decay was detected only t SF = 0.5 ms σ ≈ 0.25 pb Mainland 284 114 239 Pu( 48 Ca,3n) K. Rykaczewski tomorrow No decays was observed
23
The discovery of SHE raised a questions The discovery of SHE raised a questions:
24
Pb β-β- waiting point Uranium HN β-β- β-β- Are SHN produced in stellar explosions? SHN Are SH atoms and nuclei different from lighter species? Where is the end of the nuclear landscape? …and what are the shapes and density of nuclei at the mass limit? Yuri Oganessian. ARIS 2014, June 5, 2014 in Tokyo, Japan
25
Act + 48 Ca Expanded studies Search for new elements STRATEGY Neutron number proton number Fusion of 208 Pb and 209 Bi with projectiles A > 50 Fusion reaction of Actinide-target nuclei with 48 Ca projectiles σ ≈10 pb low intensity of RIB σ ≤0.07pb 50 Ti, 54 Cr, 58 Fe 0.3 pb σ ≤0.12pb Yuri Oganessian. ARIS 2014, June 5, 2014 in Tokyo, Japan
26
Obviously... the field of the research is limited by the production of super heavy nuclei
27
Everything we know about SH-nuclei produced in 48 Ca-induced reactions: - Reaction of synthesis (CN and neutron evaporation) - Production cross sections (excitation functions) - Competing channels (background) - Decay chains (principal decay modes) - Half-lives of the SHN (and its α-decay products ) All achievements obtained in last decade : - in experimental technique, - in accelerator and plasma physics, - in detectors, - in target technologies, etc. and …allow us to think about a SHE-Factory …allow us to think about a SHE-Factory with production rate about 100 times higher than what we currently have
28
Factory of SHE
29
SHE-Factory Isotope production: Cm-248 Bk-249 Cf-251 New accelerator High beam dose of : Ca-48 Ti-50 Ni-64 SC- separator & sophisticated detectors To be increased 10 times Factor 10-20 Depend of target durability Factor 3-5 is closely linked to the intellect Yuri Oganessian. ARIS 2014, June 5, 2014 in Tokyo, Japan
30
Yu. Oganessian 2010 High Flux Isotope Reactor at Oak- Ridge Cm248 α, SF Bk250 β - Cm 248 Cf252 α, SF Cf252 α, SF α, (n,f) Cf250 α Cf249 α, (n,f) 94 Pu244 α Pu243 β - Pu242 α Pu241 β -, (n,f) Pu240 α Pu Am246 β - Cm247 α, (n,f) 150 148 N 95 96 Pu246 β - Pu245 β - Am245 β - Am244 β - Am243 α Am242 β -,EC,(n,f) Am241 α Am Cm246 α Cm245 α, (n,f) Cm244 α Cm243 α, (n,f) Cm242 α Cm Bk 97 Cf 98 start 152 146 Z Bk 249 Cf251 Cf 251 start new mode gave by now factor: 6.5 Cf 251 Isolation from the “Old 252 Cf sources” & mass separation
31
118 294 293 295 296 Lv 290 289 291 292 Fl 285 287 288 Cn 282 281 284 Ds 277 279 281 Hs 273 275 Lv 293 Fl 289 Cn 285 269 Rf 265 267 Fl 286 271 Hs 277 Ds 283 Sg, + Ca 48 249 250 251 Cf 3n and 4n evaporation channels Cf - mixed target made in ORNL Search for new isotopes of Lv and element 118 0.42/0.22/0.36 HEAVIEST NUCLEI Yuri Oganessian. ARIS 2014, June 5, 2014 in Tokyo, Japan α α α α α new:
32
Increase a beam dose Beam intensity&Beam time New accelerator Factory 10-20 pµA~ 7000 h/year Production today: ~ 5·10 19 /y with Factory: 1.0·10 21 /y factor: 20 From ECR New cyclotron 10-20 pµA New accelerator and new Lab. at Dubna Yuri Oganessian. ARIS 2014, June 5, 2014 in Tokyo, Japan
33
factor: 5-10 target station beam EVR’s transportinterfaceanalyzer Detectors acceleration Z, A 48 Ca Scheme of the production and delivery SH-atoms to the detectors Large acceptance SC-gas filled recoil separator Gas catcher Mass analyzer Actinides if necessary SHE Focal plane detector array Present Yuri Oganessian. ARIS 2014, June 5, 2014 in Tokyo, Japan
34
Dubna, May 22, 2014
35
FLNR, JINR (Dubna) ORNL (Oak-Ridge, USA) LLNL (Livermore, USA) LLNL (Livermore, USA) ANL (Argonne, USA) GSI (Darmstadt, Germany) GSI (Darmstadt, Germany) TAMU Cyclotron Institute (Texas, USA) GANIL (Caen, France) GANIL (Caen, France) RIAR (Dimitrovgrad, Russia) RIAR (Dimitrovgrad, Russia) Vanderbilt University (Nashville, USA) Collaboration Thank you Yuri Oganessian. ARIS 2014, June 5, 2014 in Tokyo, Japan
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.