Download presentation
1
Quantum Dots in Photonic Structures
Lecture 7: Low dimensional structures Jan Suffczyński Wednesdays, 17.00, SDT Projekt Fizyka Plus nr POKL /11 współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego w ramach Programu Operacyjnego Kapitał Ludzki
2
Plan for today Reminder 2. Doping and holes 3.
Low dimensional structures
3
Wigner-Seitz Cell construction
Form connection to all neighbors and span a plane normal to the connecting line at half distance
4
Bloch waves Bloch’s theorem: Solutions of the Schrodinger equation
Felix Bloch 1905, Zürich , Zürich for the wave in periodic potential U(r) = U(r+R) are: Periodic (unit cell) part Envelope part Bloch function: modified slide from Rob Engelen
5
Nearly free electron model
Origin of a band gap! Kittel
6
Isolated Atoms
7
Diatomic Molecule
8
Four Closely Spaced Atoms
conduction band valence band
9
Band formation
10
Electronic energy bands
allowed energy bands
11
Brilluoin zones e (k): single parabola folded parabola
12
Electron velocity and effective mass in the k-space
13
Electron velocity and effective mass in the k-space
On crossing the zone boundary, the phase velocity changes direction: the electron is reflected Velocity is zero at the top and bottom of energy band.
14
Electron velocity and effective mass in the k-space
Velocity is zero at the top and bottom of energy band, the. Efective mass: m*>0 at the band bottom, m*<0 at the band top, in the middle: m*→±∞ (effective mass description fails here).
16
Doping of semiconductors
17
Holes Consider an insulator (or semiconductor) with a few electrons excited from the valence band into the conduction band Apply an electric field Now electrons in the valence band have some energy states into which they can move The movement is complicated since it involves ~ 1023 electrons
18
Holes We can “replace” electrons at the top of the band which have “negative” mass (and travel in opposite to the “normal” direction) by positively charged particles with a positive mass, and consider all phenomena using such particles Such particles are called Holes Holes are usually heavier than electrons since they depict collective behavior of many electrons
19
Low-dimensional structures
20
Dimensionality 2 1 2 21 2 22 2 23 Increase of the dimension
in one direction Increase of the volume 2 1 2 21 2 22 Jednym z ulubionych fraktali Mandelbrota jest wybrzeże Wielkiej Brytanii. Ktoś mógłby naiwnie sądzić, że brzeg ma dobrze określoną długość. Mandelbrot wykazał jednak, że to nieprawda: wynik zależy od skali, w jakiej wykonujemy pomiary. Gdybyśmy mierzyli długość angielskiego wybrzeża stukilometrowym prętem, pominęlibyśmy takie jego cechy jak ujście Tamizy, Wash, Firth of Forth czy Kanał Bristolski. Pręt o długości 10 km pozwoliłby uwzględnić takie duże struktury, ale pominąłby ujścia mniejszych rzek i niewielkie zatoki. Można byłoby je uwzględnić, używając pręta o długości 1 km lub 1 m, ale wtedy nadal ignorowalibyśmy wiele drobnych elementów, takich jak głazy. Im mniejsza skala pomiaru, tym większa długość linii brzegowej. Wynik zależy od skali ponieważ wybrzeże ma cechy fraktalne: wykazuje przybliżone samopodobieństwo na wszystkich poziomach, od wielkich kanałów do małych kamyków. Wymiar wybrzeża leży zatem pomiędzy 1 i 2 - nie jest to ani regularna krzywa, ani też pełny, dwuwymiarowy obiekt geometryczny. 2 23
21
Low-dimensional structures
B A z B A z z A quantum dot quantum wire quantum well 21
22
Discrete States Quantum confinement discrete states
Energy levels from solutions to Schrodinger Equation Schrodinger equation: For 1D infinite potential well If confinement in only 1D (x), in the other 2 directions energy continuum x=0 x=L V
23
Quantum Wells Energy of the first confined level Decrease of the level energy when width of the Quantum Well decreased W. Tsang, E. Schubert, APL’1986
24
Quantum Wells Energy of confined levels GaAs/AlGaAs Quantum Well
R. Dingle, Festkorperprobleme’1975
25
In 3D… For 3D infinite potential boxes Simple treatment considered
Potential barrier is not an infinite box Spherical confinement, harmonic oscillator (quadratic) potential Only a single electron Multi-particle treatment Electrons and holes Effective mass mismatch at boundary
26
Density of states Structure Degree of Confinement Bulk Material 0D
Quantum Well 1D 1 Quantum Wire 2D Quantum Dot 3D d(E)
27
Quantum Dots
28
QD as an artificial atom
29
QD as an artificial atom
Quantum Dot 3D confinement of electrons Discrete density of electron states Emission spectrum composed of individual emission lines Non-classical radiation statistics (e. g. single photon emission) Creation of „molecules” possible Większość ze współcześnie dyskutowanych zastosowań rzeczywiście wykorzystuje właściwości pojedynczych kropek kwantowych wynikające z w pełni dyskretnego widma energetycznego i podobieństw do atomów. Stąd teŜ kropki kwantowe są często nazywane sztucznymi atomami. NaleŜy mieć jednak świadomość, Ŝe analogie te wcale nie są za daleko idące, i Ŝe system otrzymywany sztucznie przez człowiek w ciele stałym, róŜni się wciąŜ istotnie pod wieloma względami od naturalnych atomów. Na Rys. 2.3 pokazano porównanie obrazu atomu helu oraz typowej samo rosnącej kropki półprzewodnikowej z arsenku indu w matrycy z arsenku galu. Widoczna jest natychmiast róŜnica w skali wielkości, czy geometrii.
30
QD as an artificial atom - differences
Quantum Dot Size 0.1 nm 10 nm Confining potential Coulombic (~1/r2) Parabolic Electron binding energy 10 eV 100 meV Interaction of electron with environement Weak Strong (phonons, charges, nuclear spins…) Anisotropy of confining potential No Yes (shape, compoistion, strain…)
31
QD size Should be small enough to see quantum effect
kBT at 4.2 K ~0.36 meV --> for electron maximum dimension in 1D ~ nm Small size larger energy level separation (Energy levels must be sufficiently separated to remain distinguishable under broadening, e.g. thermal)
32
QD types and fabrication methods
Goal: to engineer potential energy barriers to confine electrons in 3 dimensions Basic types/methods Colloidal chemistry Electrostatic Lithography Epitaxy Fluctuation Self-organized Patterned growth - „Defect” QDs
33
Colloidal Particles Engineer reactions to precipitate quantum dots from solutions or a host material (e.g. polymer) In some cases, need to “cap” the surface so the dot remains chemically stable (i.e. bond other molecules on the surface) Can form “core-shell” structures Typically group II-VI materials (e.g. CdS, CdSe) Size variations ( “size dispersion”) Si nanocrystal, NREL CdSe core with ZnS shell QDs Red: bigger dots! Blue: smaller dots! Evident Technologies: Sample papers: Steigerwald et al. Surface derivation and isolation of semiconductor cluster molecules. J. Am. Chem. Soc., 1988.
34
Electrostatically defined QDs
Only one type of particles (electron or holes) confined --> (No spectroscopy)
35
Lithography defined QDs
QW etching and overgrowth QW Etching V.B. Verma, M.J. Stevens, K.L. Silverman, N.L. Dias, A. Garg, J.J. Coleman and R.P. Mirin. Photon antibunching from a single lithographically defined InGaAs/GaAs quantum dot. Optics Express. Vol. 19, No. 5, Feb. 28, 2011, p Verma/NIST Overgrowth Mismatch of bandgaps potential energy well The advantage: QD shaping and positioning The drawback: poor optical signal (dislocations due to the etching!)
36
Lithography defined QDs
V. B. Verma et al., Opt. Express’2011
37
Lithography Etch pillars in quantum well heterostructures
Quantum well heterostructures give 1D confinement Pillars provide confinement in the other 2 dimensions Disadvantages: Slow, contamination, low density, defect formation A. Scherer and H.G. Craighead. Fabrication of small laterally patterned multiple quantum wells. Appl. Phys. Lett., Nov 1986.
38
Flucutation type QDs Flucutation of QW thickness
Flucutation of QW composition
39
Epitaxy: Self-Organized Growth
Lattice-mismatch induced island growth Self-organized QDs through epitaxial growth strains Stranski-Krastanov growth mode (use MBE, MOCVD) Islands formed on wetting layer due to lattice mismatch (size ~10s nm) Disadvantage: size and shape fluctuations, strain, Control island initiation Induce local strain, grow on dislocation, vary growth conditions, combine with patterning
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.