Presentation is loading. Please wait.

Presentation is loading. Please wait.

New Opportunities for Hadron Physics with the Planned PANDA Detector

Similar presentations


Presentation on theme: "New Opportunities for Hadron Physics with the Planned PANDA Detector"— Presentation transcript:

1 New Opportunities for Hadron Physics with the Planned PANDA Detector
Overview of the PANDA Physics Program The PANDA Detector Selected Simulation Results Charmonium: EM decays Charmonium: Open charm decays Charmonium in nuclear matter James Ritman Univ. Giessen

2 James Ritman Univ. Giessen
What Do We Want To Know? Why don‘t we observe isolated quarks? Q-Q potential in the charmonium system Are there other forms of hadrons? e.g. Hybrids qqg or Glueballs gg Why are hadrons so much heavier than their constituents? p-A interactions James Ritman Univ. Giessen

3 Why Don’t We See Isolated Quarks?
James Ritman Univ. Giessen

4 Charmonium – the Positronium of QCD
Mass [MeV] Binding energy [meV] 4100 y ¢¢¢ (4040) Ionisationsenergie 3 P (~ 3940) 2 3900 D 3 1 S 3 3 (~ 3800) 3 S 3 1 D 3 3 D 3 P (~ 3880) 1 2 1 3 -1000 2 3 3 D 1 3 P (~ 3800) y ¢¢ (3770) 1 D 2 3 P 2 3 D 2 1 S 2 3 S 2 1 P 2 3 3 D 3 D 2 2 1 1 2 3 P 1 1 ~ 600 meV 3700 y (3686) Threshold 2 3 P 10-4 eV -3000 h c (3590) c (3556) h (3525) 2 c c (3510) 3500 1 c (3415) -5000 Charmonium ähnlicher Stellenwert wie Positronium bzw. Wasserstoffatom einfach (nicht-relativistisch) am besten verstanden 3300 1 3 S 1 1 S 1 8·10-4 eV -7000 y (3097) 3100 e + 0.1 nm e - h c (2980) C 1 fm C 2900 James Ritman Univ. Giessen

5 Why Antiprotons? e+e- annihilation via virtual photon: only states with Jpc = 1-- In pp annihilation all mesons can be formed Measured rate Beam Resonance cross section CM Energy Resolution of the mass and width is only limited by the beam momentum resolution James Ritman Univ. Giessen

6 James Ritman Univ. Giessen
High Resolution Crystal Ball: typical resolution ~ 10 MeV Fermilab: 240 keV  p/p < 10-4 needed James Ritman Univ. Giessen

7 James Ritman Univ. Giessen
Open Questions c (11S0) (Simu results) experimental error on M > 1 MeV G hard to understand in simple quark models c’ (21S0) Crystal Ball result way off study of hadronic decays hc(1P1) Spin dependence of QQ potential Compare to triplet P-States LQCD  NRQCD James Ritman Univ. Giessen

8 James Ritman Univ. Giessen
Open Questions States above the DD threshold Higher vector states not confirmed Y(3S), Y(4S) Expected location of 1st radial excitation of P wave states Expected location of narrow D wave states Only Y(3770) seen Sensitive to long range Spin- dependent potential (Simu results) James Ritman Univ. Giessen

9 Why Are Hadrons So Heavy?
James Ritman Univ. Giessen

10 Hadron Masses 2Mu + Md ~ 15 MeV/c2 Protons = (uud) ? Mp = 938 MeV/c2
no low mass hadrons (except p, K, h) spontaneously broken chiral symmetry (P.Kienle)

11 Hadron Production in the Nuclear Medium
Mass of particles may change in dense matter  Quark atom d u d u _ D+ c d d u attractive d u _ d D- c d u repulsive d u James Ritman Univ. Giessen

12 J/Y Absorption in Nuclei
J/Y absorption cross section in nuclear matter p + A  J/Y + (A-1) (Simu results)

13 Comparison of p-A Reactions to A-A
Much lower momentum for heavy produced particles (2 GeV for “free”) (Effects are smaller at high momentum) Well defined nuclear environment (T and r) James Ritman Univ. Giessen

14 The Experimental Facility
James Ritman Univ. Giessen

15 HESR

16 HESR: High Energy Storage Ring
Beam Momentum GeV/c High Intensity Mode: Luminosity 2x1032 cm-2s-1 (2x107Hz) dp/p (st. cooling) ~10-4 High Resolution Mode: Luminosity 2x1031 cm-2s-1 dp/p (e- cooling) ~10-5 James Ritman Univ. Giessen

17 James Ritman Univ. Giessen

18 James Ritman Univ. Giessen

19 Central Tracking Detectors
MVD: (Si) 5 layers ~ 9 Mio pixels Andrei Sokolov HK39.5 Thursday 15:00 Straw-Tubes Mini-Drift-Chambers

20 James Ritman Univ. Giessen
PID ToF Muon Detectors DIRC James Ritman Univ. Giessen

21 James Ritman Univ. Giessen
Open Charm pp DD DKpp „no background events added“ Mass Resolution ~ 10 MeV/c2 James Ritman Univ. Giessen

22 Vertex Distributions GEANT4
Transverse D meson signal DPM background signal DPM background Scale up by x10! 0.15 < Vz < 5 mm Longitudinal James Ritman Univ. Giessen

23 James Ritman Univ. Giessen
DD Missing Mass signal DPM background N.B. different x scale | Mmiss 2|< GeV2 (tight cut) James Ritman Univ. Giessen

24 James Ritman Univ. Giessen
Open Charm As an example of the Pbar P  Y(3770)  DD Analysis Plot MDD – MD – MD + 2x1869MeV raw S/B ~ 10-7 James Ritman Univ. Giessen

25 Detection of Rare Neutral Channels
As an example: hcgg Background: p0g, p0p0 hc:p0g:p0p0 1:50:500 Comparison with E835 (PLB 566,45) PANDA James Ritman Univ. Giessen

26 Dimuon Spectrum in p+Cu
Beam momentum “on resonance” Full background simulations (result scaled up) Muons from J/Y have high Pt J/Y has low Pt (coplanar) J/Y James Ritman Univ. Giessen

27 James Ritman Univ. Giessen
Summary GSI will explore the intensity frontier High luminosity cooled p from 1-15 GeV/c Wide physics program including Charmonium spectroscopy pbar-A reactions Search for glueballs and charm hybrids James Ritman Univ. Giessen

28 James Ritman Univ. Giessen

29 James Ritman Univ. Giessen
In part supported by: GSI BMBF 06GI144 DFG James Ritman Univ. Giessen

30 James Ritman Univ. Giessen
Target A fiber/wire target will be needed for D physics, A pellet target is conceived: 1016 atoms/cm2 for D=20-40 mm 1 mm James Ritman Univ. Giessen

31 Electromagnetic Calorimeter
Detector material PbWO4 Photo sensors Avalanche Photo Diodes Crystal size  35 x 35 x 150 mm3 (i.e. 1.5 x 1.5 RM2 x 17 X0) Energy resolution 1.54 % / E[GeV] % Time resolution s  130 ps (N.B. with PMT!) Total number of crystals 7150 James Ritman Univ. Giessen

32 James Ritman Univ. Giessen
Tracking Resolution Single track resolution Invariant mass resolution Example reaction: pp  J/y + F (s = 4.4 GeV/c2) J/y  m+m- F  K+K- s(J/y) = 35 MeV/c2 s(F) = 3.8 MeV/c2 James Ritman Univ. Giessen

33 James Ritman Univ. Giessen
Staged Construction James Ritman Univ. Giessen

34 Pbar-Nucleus Interactions
The interaction of charmed mesons with the baryonic environment strongly effects production rates near threshold James Ritman Univ. Giessen

35 Strange Baryons in Nuclear Fields
Hypernuclei open a 3rd dimension (strangeness) in the nuclear chart Double-hypernuclei: very little data Baryon-baryon interactions: L-N only short ranged (no 1p exchange due to isospin) L-L impossible in scattering reactions K+K X- 3 GeV/c Trigger p _ X secondary target X-(dss) p(uud)  L(uds) L(uds)

36 James Ritman Univ. Giessen
Charmonium Spectroscopy Probe large separations with highly excited qq states _ James Ritman Univ. Giessen

37 James Ritman Univ. Giessen
The GSI Future Project Nuclear Structure: paths of nucleo-synthesis Heavy Ion Physics: hot and dense nuclear matter Ion and laser induced Plasma: very high energy densities Atomic physics: QED, strong EM fields, Ion-Matter interactions Physics with Antiprotons properties of the strong force Project approved Feb 2003 James Ritman Univ. Giessen

38 James Ritman Univ. Giessen
Open Questions The c(11S0) The c(21S0) The hc(1P1) States above the DD threshold James Ritman Univ. Giessen

39 Proton Form Factors at large Q2
At high values of momentum transfer |Q2| the system should be describable by perturbative QCD. Due to dimensional scaling, the FF should vary as Q4. The time like FF remains about a factor 2 above the space like. These differences should vanish in pQCD, thus the asymptotic behavior has not yet been reached at these large values of |q2|. (HESR up to s ~ 25 GeV2) q2>0 q2<0 James Ritman Univ. Giessen

40 Mixing With Mesonic States
Width: could be narrow (5-50 MeV) since DD suppressed for some states O+-  DD,D*D*,DsDs (CP-Inv.) (QQg)  (Qq)L=0+(Qq)L=0 (Dynamic Selection Rule) If DD forbidden, then the preferred decay is (ccg)  (cc) + X , e.g  c + h James Ritman Univ. Giessen

41 Spontaneous Breaking of Chiral Symmetry
Although the QCD Lagrangian is symmetric, the ground state need not be. (e.g. Fe below TCurie ) Example:

42 James Ritman Univ. Giessen
Exotic Hadrons James Ritman Univ. Giessen

43 James Ritman Univ. Giessen
Glueballs C. Morningstar PRD60, (1999) Self interaction between gluons  Construction of color-neutral hadrons with gluons possible exotic glueballs don‘t mix with mesons (qq) 0--, 0+-, 1-+, 2+-, 3-+,... g 1GeV=32pt James Ritman Univ. Giessen

44 James Ritman Univ. Giessen
Charm Hybrids ccg Prediction in QCD: Collective gluon excitation (Gluons contribute to quantum numbers) Ground state: JPC = (spin exotic) distance between quarks James Ritman Univ. Giessen

45 James Ritman Univ. Giessen
Partial Wave Analysis Partial wave analysis as important tool Example of 1-+ pd  X(1-+)+p+p, X  h p Strength ~ qq States ! Signal in production but not in formation is interesting ! James Ritman Univ. Giessen

46 James Ritman Univ. Giessen
Quark Condensate The QCD vacuum is not empty Hadron masses are generated by the strong interaction with <qq> (also with gluon condensate) The density of the quark condensate will change as a function of temperature and density in nuclei. This should lead to modifications of the hadron’s spectral properties. James Ritman Univ. Giessen

47 Hadrons in the Nuclear Medium
Reduction of <qq> Spectral functions <qq> S.Klimt et al., Nucl. Phys. A515, 429 (1990). W.Peters et al., Nucl. Phys. A632, 109 (1998).

48 Deeply Bound Pionic Atoms
Pionic capture is possible with the appropriate choice of kinematics: d+n  3He + p- These results indicate a mass shift of ~25 MeV for pions at normal nuclear matter density. James Ritman Univ. Giessen

49 Kaons in Nuclear Matter
Kaon and anti-kaon masses should no longer be degenerate in nuclear matter. Expected signal: increased K- production compared to K+. J.Schaffner-Bielich et al., Nucl. Phys. A (1997) 325. James Ritman Univ. Giessen

50 Measured K- Cross Section
Comparison of proton-proton data with heavy ion data[2]: dramatic enhancement of the K- production probability KaoS [1] A.Sibirtsev et al., Z.Phys. A358 (1997) 101. [2] F.Laue et al., Phys.Rev. Lett. 82 (1999) 1640. [3] C.Quentmeier et al., Phys Lett B 515 (2001) 276. James Ritman Univ. Giessen

51 James Ritman Univ. Giessen
Open Charm in Nuclei The interaction of charmed mesons with the baryonic environment strongly effects production rates near threshold James Ritman Univ. Giessen

52 cc Production in Nuclear Matter
The mass of charmonium states is not expected to change much. However, a drop of the DD mass leads to a widening of the cc states. Y’ will have too high momentum, most decay outside.  but wider tails James Ritman Univ. Giessen

53 James Ritman Univ. Giessen
Charmonium in Nuclei Due to the increased width, the dileptons from charmonium states below the free DD threshold are strongly suppressed. Golubeva et al. Eur.Phys.J. A17 (2003) James Ritman Univ. Giessen


Download ppt "New Opportunities for Hadron Physics with the Planned PANDA Detector"

Similar presentations


Ads by Google