Download presentation
Presentation is loading. Please wait.
Published byBruno Merritt Modified over 9 years ago
1
Little Higgs Dark Matter and Its Implications at the LHC Chuan-Ren Chen (NTNU) XS 2014, 5/6/2014 In collaboration with H-C Tsai, M-C Lee, 1402.6815[hep-ph]
2
Outline CRC (NTNU) 2 LHT BSM EXP, OBS predictions explanations constraints evidences
3
Higgs boson CRC (NTNU) 3 July 4 2012 @ CERN Higgs boson is discovered, a significant step for understanding of EWSB!
4
Naturalness “Problem” CRC (NTNU) 4 Higgs is naturally ~ 200 GeV
5
CRC (NTNU) 5 e.g. Supersymmetry
6
Little Higgs Model CRC (NTNU) 6 100, Kaplan…
7
Littlest Higgs Model CRC (NTNU) 7
8
8 gauge symmetries are embedded in global SU(5) Littlest Higgs Model kinetic term top sector
9
Cancellation CRC (NTNU) 9
10
Little Higgs Model CRC (NTNU) 10
11
Little Higgs Model w/ T-parity CRC (NTNU) 11
12
Yukawa Sector CRC (NTNU) 12
13
Top Sector CRC (NTNU) 13
14
particle spectrum CRC (NTNU) 14 SM T-parity EvenT-parity Odd * parameters: f, k q, k l, λ 1, m h * The lightest T-odd particle is stable dark matter candidate
15
EW constraints CRC (NTNU) 15
16
Unitarity CRC (NTNU) 16 constraining λ ’s Belyaev, CRC, Tobe, Yuan, hep-ph/0609179
17
T-odd Fermions CRC (NTNU) 17 Cao, CRC, 0707.0877
18
Higgs Pheno. CRC (NTNU) 18 m h (GeV) gg -> h production is always suppressed CRC, Tobe, Yuan, hep-ph/0602211 t, T +, q -
19
Higgs Pheno. CRC (NTNU) 19 gg -> h -> γ γ is suppressed CRC, Tobe, Yuan, hep-ph/0602211 Han, Wang, Yang, Zhu, 1301.0090
20
Dark Matter CRC (NTNU) 20 Some evidences A nonbaryonic, “dark”, charge-neutral object which interacts weakly with normal matters
21
Dark Matter at LHT CRC (NTNU) 21 two possible candidates: heavy photon, T-odd neutrinos dark matter: T-odd partner of photon T-odd partner of neutrino
22
Dark Matter & LHT CRC (NTNU) 22 Ωh2Ωh2 can fit relic density data well. XENON100 HOWEVER Direct search of DM excludes >> Planck+WMAP
23
Dark Matter & LHT CRC (NTNU) 23 two possible candidates: heavy photon, T-odd neutrinos dark matter: T-odd partner of photon T-odd partner of neutrino dark matter:
24
Dark Matter & LHT CRC (NTNU) 24 M h = 125 GeV solution? Yes, M AH ≳ M h /2 For heavier A H, co-annihilations with T-odd fermions are needed!
25
co-annihilation w/ T-odd leptons (T-odd quarks are heavy!) CRC (NTNU) 25
26
w/ light T-odd leptons CRC (NTNU) 26 M h = 125 GeV are so light! LHC should be able to produce lots of them. Planck2013 + WMAP-9yrs
27
light T-odd leptons at LHC 8 TeV CRC (NTNU) 27 f (GeV) dilepton + met lepton + met large production cross section 1 ~ 10 pb met only 100%
28
arbitrary P t (e) (GeV) CRC (NTNU) 28 dilepton + met dilepton + MET search at LHC: slepton pair or chargino pair in SUSY NO Constraint
29
MT2 (GeV) arbitrary CRC (NTNU) 29 dilepton + met dilepton + MET search at LHC: NO Constraint slepton pair or chargino pair in SUSY kill all signals
30
CRC (NTNU) 30 one lepton + MET search at LHC: f (GeV) lepton + met search for W’ one high pt lepton + large MT M T (GeV) M T > 1 TeV kill signal NO constraint from current data
31
light T-odd leptons at LHC 8 TeV CRC (NTNU) 31 arbitrary P t (e) (GeV) f (GeV) dilepton + met lepton + met met only charged lepton is soft! can contribute mono-jet + met signal at LHC soft direct search is very challenging!
32
w/ light T-odd leptons CRC (NTNU) 32 M h = 125 GeV Direct search:
33
co-annihilation w/ T-odd quarks (T-odd leptons are heavy!) CRC (NTNU) 33
34
CRC (NTNU) 34 w/ light T-odd quarks 3 down-type: 3 up-type: degenerate case inconsistent with stable heavy quark search at colliders However, ∵ ( M t_ - M AH ) < M W < M top top partner ONLY has 4-body decay channel, decay life time is too long!
35
CRC (NTNU) 35 w/ non-degenerate T-odd quarks projective LUX 2014 can explore M AH up to ~190 GeV, future expts can explore whole parameter space.
36
CRC (NTNU) 36 arbitrary P t (j) (GeV) HUGE production cross section, jet p T is very soft! light T-odd quarks at the LHC dijet + MET search is very challenging!
37
CRC (NTNU) 37 light T-odd quarks at the LHC contributes to mono-jet BSM search at LHC. soft
38
CRC (NTNU) 38 95% C.L. exclusion 2.8 pb 0.16 pb 0.05 pb 0.02 pb f < ~1.4 TeV (M AH < ~ 220 GeV) is DISFAVORED. light T-odd quarks at the LHC allow one other jet > 35 GeV
39
CRC (NTNU) 39 Summary With M h = 125 GeV, co-annihilation is needed for heavier (not ~ M h /2) dark matter in LHT model to explain current universe. In co-annihilation region, T-odd new heavy fermions should be very light, large production cross section at the LHC. The small mass difference between dark matter and T-odd leptons makes collider search very difficult. light T-odd top quark partner decays “too late” -> not allowed by collider searches. mono-jet + MET from light T-odd quarks + 1jet production at the LHC exceed current limit if M AH < 220 GeV. Future DM direct search exps can explore whole parameter space.
40
CRC (NTNU) 40 Back UP
41
Little Hierarchy Problem CRC (NTNU) 41 Effective SM Schmaltz et al, hep-ph/0502182 and references therein New Physics should be larger than 5 TeV tension between 1 TeV and 5 TeV!!
42
CRC (NTNU) 42
43
CRC (NTNU) 43
44
EW constraints CRC (NTNU) 44
45
CRC (NTNU) 45 “heavy neutrino” can NOT be a dark matter KK neutrino in UED model relic density elastic scattering w/ nuclei ~ 2x10 -3 pb >> 10 -9 pb (current limit) same as SM coupling Servant, Tait, hep-ph/0206071 Servant, Tait, hep-ph/0209262
46
mono-jet +MET at LHC CRC (NTNU) 46 95% C.L. exclusion 2.8 pb 0.16 pb 0.05 pb 0.02 pb SR3: jet P t > 350 GeV NO constraint from current data
47
CRC (NTNU) 47 “Solution”
48
New Particles CRC (NTNU) 48 + SM particles T-parity Even T-parity Odd * parameters: f, k q, k l, λ 1, m h * The lightest T-odd particle is stable dark matter candidate
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.