Presentation is loading. Please wait.

Presentation is loading. Please wait.

Entry Task 11/21/2011 Simplify completely. 1.) 2v(4v 2 – 3) + 3(5v 3 + 2v) 2.) 3x – 4x(x-5) + (2x-7)(3x) 3.) 4b 4 – 3b(2b 2 + 3b) + 3b 2 (b 2 + 2b) -4b.

Similar presentations


Presentation on theme: "Entry Task 11/21/2011 Simplify completely. 1.) 2v(4v 2 – 3) + 3(5v 3 + 2v) 2.) 3x – 4x(x-5) + (2x-7)(3x) 3.) 4b 4 – 3b(2b 2 + 3b) + 3b 2 (b 2 + 2b) -4b."— Presentation transcript:

1 Entry Task 11/21/2011 Simplify completely. 1.) 2v(4v 2 – 3) + 3(5v 3 + 2v) 2.) 3x – 4x(x-5) + (2x-7)(3x) 3.) 4b 4 – 3b(2b 2 + 3b) + 3b 2 (b 2 + 2b) -4b 2 4.) make an input-output table for the following function when the domain is -5, 0, 5, 10 degrees Celsius.

2 Chapter 4 A1.2.B on wall A1.3.A on wall A1.3.B Represent a function with a symbolic expression, as a graph, in a table, and using words, and make connections among these representations. A1.4.C Identify and interpret the slope and intercepts of a linear function, including equations for parallel and perpendicular lines A1.4.E Describe how changes in the parameters of linear functions and functions containing an absolute value of a linear expression affect their graphs and the relationships they represent A1.4.B Write and graph an equation for a line given the slope and y-intercept, the slope and a point on the line, or two points on the line and translate between forms of linear equations. Algebra 1

3 Section 4.1 Objective: Plot points in a coordinate plane. http://www.rblewis.net/technology/EDU506/WebQuests/co_plane/coplane.html

4 Entry Task; copy this down in your math notebooks, if you finish, do it again. (2,1)

5 Vocabulary cont. X-coordinate- the first number in an ordered pair Y-coordinate-the second number in an ordered pair In (2,1), 2 is the X-coordinate and 1 is the Y coordinate Graph- the point in the plane that corresponds to an ordered pair.

6 Plotting Points Plot the following points (3,4) (-2,-3) (2,0)

7 Section 4.1 cont. Objective: Draw a scatter plot and make predictions about real-life situations http://onlinestatbook.com/chapter4/graphics/age_scatterplot.gif

8 Making a scatter plot

9 Making a scatter plot cont. A scatter plot is a graph that compares two quantities. When we make a scatter plot we do not connect the dots. Look at the graph to the right. Is this a scatter plot? What might we title it? What can we say about how a husband’s age changes as a wife’s age changes?

10 A B C D E Entry Task 12/4/2012 1.) Write the ordered pair that goes with each of the points graphed below and tell what quadrant it is in. 2. Solve: 3x+7 = 19 A scatter plot is a graph that compares two quantities. When we make a scatter plot we do not connect the dots. Look at the graph below. 3.) Is this a scatter plot? 4.) What might we title it? 5.) What can we say about how a husband’s age changes as a wife’s age changes?

11 Entry Quiz 11/19/2010 Graph the following points on the graph paper provided: A(3,-2) B(2,-5) C(-3,-4) D(4,1) E(0,-4) On the back, solve the following and show your work: 1.) 4x-5= 202.) 2(3x+1)-4x=-x – 3 3.) Use the scatter plot to the right to determine how the mean annual temperature in Nevada changes as the elevation increases.

12 Class Work Pg. 214 #1-10

13 Entry Task 11/22/2010 Graph the following equation using a table Is the point (3,-4) a solution to this equation? Why?

14 Class Work Pg. 214-215 #12-14, 36, 41, 45, 48,50, 52-55, 60 EC pg. 216-217 #67-75

15 Entry Task 11/29/2010 Grab an entry task sheet from the front of the room then Graph the following equation using a table Is the point (3,-4) a solution to this equation? Why?

16 Section 4.3 Objective: Find the intercepts of the graph of a linear equation. Use the intercepts to make a quick graph of the linear equation.

17 Vocabulary X-intercept- the point at which the graph crosses the x- axis. Y-intercept-the point at which the graph crosses the y axis http://en.labs.wikimedia.org/wiki/Algebra/Function_Graphing

18 Finding intercepts Find the x and y –intercepts for To find the x intercept plug 0 in for y and solve for x To find the y intercept plug 0 in for x and solve for y

19 Using intercepts Use the x and y-intercepts found previously to graph

20 Homework pg. 221 #1-9

21 Entry Task 11/30/2010 Find the x-and y-intercepts of the equation Graph the Equation using the x-and y-intercepts

22 Homework Pg. 221 #10-19, 26-28 EC pg. 222 #56-66

23 Entry Task 12/01/2010 Find the x-and y-intercepts of the equation Graph the Equation using the x-and y-intercepts

24 Section 4.4 Objective: Find the slope of a line using two of its points

25 Slope http://intermath.coe.uga.edu/dictnary/descript.asp?termID=336

26 Finding slope from two points Point 1 (x 1, y 1 ) Point 2 (x 2, y 2 ) Point 1 (2, 1) Point 2 (3, 5)

27 Positive or negative slope A line has positive slope if it rises from left to right A line has negative slope if it falls from left to right A line has a slope of zero if it is a horizontal line A line has an undefined slope if it is a vertical line m is undefined

28 Parallel and Perpendicular lines

29 Homework Pg. 230 #5-10, 12-13, 35-37 E.C. pg. 230 #20-30

30 Entry Task 12/02/2010 Find the slope of the line containing the points (3, -1) and (4, -2) Is the slope positive, negative, zero, or undefined?

31 Section 4.4 Objective: Interpret the slope as a rate of change in real-life situations.

32 Slope as a rate of change Rate of change- compares two different quantities that are changing.

33 Homework Pg. 231 #51-61 E.C. pg. 230 #47-50, 62- 65

34 Entry Task 12/03/2010 The bottom of Bluewood ski resort is 4545ft, the top is 5670 ft.. If the horizontal distance from the bottom of the lift to the top of the lift is 2000 ft, what is the average slope of the chair lift at Bluewood?

35 Review Day Work on worksheet

36 Entry Task 12/07/2010 Find the slope of the line containing the points (2, 5) and (6, -5) If x is time in seconds and y is distance in feet, what does the slope represent? What is the unit for the slope?

37 Section 4.5 Objective: Write linear equations that represent direct variation. Use a ratio to write an equation for direct variation.

38 Direct Variation

39 Example: Find the constant of variation and the slope of each direct variation model Work on problems 1-8 and 12-16even (1, 2) (0, 0) (2, -1)

40 Example The variables x and y vary directly. When x = 5 and y = 20. Write an equation that relates x and y. Find the value of y when x = 10 Work on homework problems 23-25

41 Homework Pg.237 #1-8, 12-16even, 23-25 E.C. pg. 238 #26-29, 34-37

42 No entry task If you are not finished with the benchmark test find the desk your test is on and do it. If you are finished work quietly on last nights homework or pg. 237 #9-11, 21, 22, 30-33 E.C. pg. 238 #26-29, 34-37

43 Entry Task 12/09/2010 Let x and y vary directly when x = 3 and y =9. Find the constant of variation Write the equation for the direct variation. Graph it and identify the slope.

44 Section 4.6 Objective: Graph a linear equation in slope-intercept form. Graph and interpret equations in slope-intercept form that model real-life situations.

45 Entry Task 02/04/2013 copy this down The linear equation y = mx + b is written in slope-intercept form. The slope is m. The y-intercept is the point (0,b). Example: y = 2x + 3 The slope is 2 The y-intercept is (0,3) 1

46 Graphing using slope and y-intercept Graph 3x + y = 2 Step 1: write in slope-intercept form Step 2: find the slope and y-intercept Step 3: Plot the point (0,b) Step 4: Draw a slope triangle to locate a second point.

47 Parallel lines Two different lines in the same plane are parallel if they do not intersect. How can we tell if to lines are parallel without graphing them? The red lines have slope m=-1 The blue lines are vertical

48 Homework Pg. 244 #28-39 E.C. pg. 245 #56-65

49 Entry Task 12/10/2010 Graph the following line using slope and y-intercept Write an equation for a line parallel to this one.

50 Agenda for today Work on the quiz When you finish work on pg. 244 #13-49 every third problem due Monday

51 Entry Task 12/13/2010 Graph the following situation: You start 165 miles from home and drive towards home at 55 miles per hour for 3 hours, where d is your distance from home.

52 Section 4.8 Objective: Identify when a relation is a function. Write equations in function form and evaluate functions.

53 Identifying functions A relation is any set of ordered pairs. A Function is a relation where for every input there is exactly one output. Decide if the following are functions, state the domain and range if they are. 12341234 InputOutput 2 4 5 Input Output 1 2 3 4 579579

54 Vertical line test Do problems 7, 8, 9

55 Function notation

56 Evaluating a function Evaluate the functions when x = -2

57 Homework Pg. 259 #11-19, 20- 22,32-34

58 Entry Task 12/15/2010 Evaluate the following functions for x = 2, x = 0, and x = 3


Download ppt "Entry Task 11/21/2011 Simplify completely. 1.) 2v(4v 2 – 3) + 3(5v 3 + 2v) 2.) 3x – 4x(x-5) + (2x-7)(3x) 3.) 4b 4 – 3b(2b 2 + 3b) + 3b 2 (b 2 + 2b) -4b."

Similar presentations


Ads by Google