Download presentation
Presentation is loading. Please wait.
Published byTheresa Baker Modified over 9 years ago
1
I.1 Diffraction Stack Modeling I.1 Diffraction Stack Modeling 1. Forward modeling operator L 1. Forward modeling operator L d (x) = (x |x’) m(x’) dx’ ModelSpace G modeldata Integral IntegralEquation:
2
2-way time Forward Modeling
3
2-way time Forward Modeling: Sum of Weighted Hyperbolas
4
G(x|x’) = x x’ x’ e iw|x-x’|/c Phase |x-x’| Geom.Spread GREEN’s FUNCTION |x-x’|
5
G(x|x’) = x x’ x’ e iw|x-x’|/c Phase |x-x’| Geom.Spread ASYMPTOTIC GREEN’s FUNCTION A(x,x’) xx’ + O( ) xx’
6
ASYMPTOTIC GREEN’s FUNCTION G(x|x’) = A(x,x’) xx’ i e x’ x’ R(x’)reflectivity
7
Diffraction Stack Modeling = ZO Modeling 1-way time
8
Diffraction Stack Modeling = ZO Modeling 2-way time Dipping Reflector
9
Diffraction Stack Modeling = ZO Modeling If c for DS is ½ that for ZO Modeling 1-way time
10
ASYMPTOTIC GREEN’s FUNCTION d(x) = A(x,x’) xx’ i e x’ x’ R(x’)reflectivity Fourier Transform: xx’ i e (t- ) xx’ F ~ (t- ) xx’ ~d(x) F x’ x’ R(x’) A(x,x’)
11
QUICK REVIEW FOURIER TRANSFORM xx’ i e (t- ) xx’ dddd ( - t) + Cos( 2 t ) + Cos( 4 t ) + Cos( 3 t ) Cos( t ) t cancellationcancellation constructive reinforcement @ t=0 (t)
12
Forward Modeling Operator (t- ) xx’ d(x,t) = x’ x’ R(x’) A(x,x’) Sum over reflectivity Spray energy along hyperbolas hyperbolas time (t- ) xx’
13
Forward Modeling Operator (t- ) xx’ d(x,t) = x’ x’ R(x’) A(x,x’) time REINFORCE CANCELLATION W
14
SUMMARY W (t- ) xx’ d(x,t) = x’ x’ 1. Exploding Reflector Modeling = Diffraction Stack Modeling A(x,x’) R(x’) reflectivity Geom. spreading Source wavelet Data Datavariables Sum over Sum overreflectors 2. High Frequency Approximation (i.e c(x) variations > 3* ) 3. Approximates Kinematics of ZO Sections, but not Dynamics d (x)x |x’)m(x’) d (x) = (x |x’) m(x’) dx’ ModelSpace G modeldata Integral IntegralEquation:
15
MATLAB Exercise: Forward Modeling W (t- ) xx’ d(x,t|x’,0) = x’ x’ R(x’) 1. To account for the source wavelet W(t), we convolve data with W(t) (recall (t- )*W(t)= W( ) ) convolve data with W(t) (recall (t- )*W(t)= W( ) ) so that modeling equation becomes (neglect A) so that modeling equation becomes (neglect A) A). Execute MATLAB program forw.m to generate synthetic data for a point scatterer and a 30 Hz wavelet. B). Execute MATLAB program forwl.m to generate synthetic data for a dipping layer model C). Execute MATLAB program forw.m to generate synthetic data for a syncline model. Note diffractions and multiple arrivals. Adjust for new models. Why the second time derivative? second time derivative?
16
MATLAB Exercise: Forward Modeling W (t- ) xx’ d(x,t) = x’ x’ R(x’) for ixtrace=1:ntrace; for ixtrace=1:ntrace; for ixs=istart:iend; for ixs=istart:iend; for izs=1:nz; for izs=1:nz; r = sqrt((ixtrace*dx-ixs*dx)^2+(izs*dx)^2); r = sqrt((ixtrace*dx-ixs*dx)^2+(izs*dx)^2); time = 1 + round( r/c/dt ); time = 1 + round( r/c/dt ); data(ixtrace,time) = migi(ixs,izs)/r + data(ixtrace,time); data(ixtrace,time) = migi(ixs,izs)/r + data(ixtrace,time); end; end; end; end; data1(ixtrace,:)=conv2(data(ixtrace,:),rick); end; * Src Wave Traveltime R(x’) { Loop over traces Loop over x in model Loop over z in model
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.