Download presentation
Published byMavis Mathews Modified over 9 years ago
1
DIFFUSION OF NEUTRONS OVERVIEW Basic Physical Assumptions
Generic Transport Equation Diffusion Equation Fermi’s Age Equation Solutions to Reactor Equation
2
Basic Physical Assumptions
Neutrons are dimensionless points Neutron – neutron interactions are neglected Neutrons travel in straight lines Collisions are instantaneous Background material properties are isotropic Properties of background material are known and time-independent HT2005: Reactor Physics T10: Diffusion of Neutrons
3
T10: Diffusion of Neutrons
Physical Model (a) (b) HT2005: Reactor Physics T10: Diffusion of Neutrons
4
T10: Diffusion of Neutrons
Collision Model θ rm b rc χm v v´ HT2005: Reactor Physics T10: Diffusion of Neutrons
5
T10: Diffusion of Neutrons
Initial Definitions j r W ex x y z ey v q HT2005: Reactor Physics T10: Diffusion of Neutrons
6
T10: Diffusion of Neutrons
Neutron Density HT2005: Reactor Physics T10: Diffusion of Neutrons
7
Angular Flux and Current Density
J dS HT2005: Reactor Physics T10: Diffusion of Neutrons
8
Generic Transport Equation
Arbitrary volume V We ignore macroscopic forces Asteroid Eros HT2005: Reactor Physics T10: Diffusion of Neutrons
9
Generic Transport Equation
Gauss Theorem: HT2005: Reactor Physics T10: Diffusion of Neutrons
10
Substantial Derivative
z r y x HT2005: Reactor Physics T10: Diffusion of Neutrons
11
Transport (Boltzmann) Equation
HT2005: Reactor Physics T10: Diffusion of Neutrons
12
T10: Diffusion of Neutrons
Collision Term z r y x HT2005: Reactor Physics T10: Diffusion of Neutrons
13
Neutron Transport Equation
HT2005: Reactor Physics T10: Diffusion of Neutrons
14
T10: Diffusion of Neutrons
Boundary Condition Outgoing direction Outward normal Ω Incoming direction ns r Volume V x y z Ω Rs Surface S V HT2005: Reactor Physics T10: Diffusion of Neutrons
15
T10: Diffusion of Neutrons
Difficulties Mathematical structure is too involved Mixed type equation (integro-differential), no way to reduce it to a differential equation Boundary conditions are given only for a halve of the values Too many variables (7 in general) Angular variable HT2005: Reactor Physics T10: Diffusion of Neutrons
16
T10: Diffusion of Neutrons
Angular Measures 180 Solar disks HT2005: Reactor Physics T10: Diffusion of Neutrons
17
T10: Diffusion of Neutrons
Plane Angles R φ HT2005: Reactor Physics T10: Diffusion of Neutrons
18
T10: Diffusion of Neutrons
Solid Angles HT2005: Reactor Physics T10: Diffusion of Neutrons
19
One-Group Diffusion Model
Infinite homogeneous and isotropic medium Neutron scattering is isotropic in Lab-system Weak absorption Σa << Σs All neutrons have the same velosity v. (One-Speed Approximation) The neutron flux is slowly varying function of position HT2005: Reactor Physics T10: Diffusion of Neutrons
20
T10: Diffusion of Neutrons
Derivation Isotropic scattering z y x r = 0 is most important HT2005: Reactor Physics T10: Diffusion of Neutrons
21
T10: Diffusion of Neutrons
Derivation II Taylor’s series at the origin: HT2005: Reactor Physics T10: Diffusion of Neutrons
22
T10: Diffusion of Neutrons
Derivation III HT2005: Reactor Physics T10: Diffusion of Neutrons
23
T10: Diffusion of Neutrons
Fick’s Law CM-System → Lab-System: HT2005: Reactor Physics T10: Diffusion of Neutrons
24
T10: Diffusion of Neutrons
Transport Mean Free Path Information about the original direction is lost Y Transport correction = A number of anisotropic collisions is replaced by one isotropic Y Y ls lscosY lscosY2 ltr HT2005: Reactor Physics T10: Diffusion of Neutrons
25
T10: Diffusion of Neutrons
Diffusion Equation HT2005: Reactor Physics T10: Diffusion of Neutrons
26
T10: Diffusion of Neutrons
Leakage Rate z Jz dz dx (x,y,z) dy y x HT2005: Reactor Physics T10: Diffusion of Neutrons
27
T10: Diffusion of Neutrons
Diffusion Equation Time-dependent: Time-independent: Time-independent from a steady source HT2005: Reactor Physics T10: Diffusion of Neutrons
28
T10: Diffusion of Neutrons
Laplace’s Operator Cartesian geometry Cylindrical geometry Spherical geometry HT2005: Reactor Physics T10: Diffusion of Neutrons
29
T10: Diffusion of Neutrons
Symmetries Slab geometry Spherical geometry Cylindrical geometry z y x z n = 0 for slab n = 1 for cylindrical n = 2 for spherical HT2005: Reactor Physics T10: Diffusion of Neutrons
30
T10: Diffusion of Neutrons
General Properties Flux is finite and non-negative Flux preserves the symmetry No return from a free surface Flux and current are continues Diffusion equation describes the balance of neutrons HT2005: Reactor Physics T10: Diffusion of Neutrons
31
T10: Diffusion of Neutrons
Interface Conditions A B z for +z - direction: for -z - direction: HT2005: Reactor Physics T10: Diffusion of Neutrons
32
T10: Diffusion of Neutrons
Boundary Condition Transport equation Free surface Diffusion eq. Straight line extrapolation from x = 0 towards vacuum: HT2005: Reactor Physics T10: Diffusion of Neutrons
33
Plane Infinite Source in Infinite Medium
Transport equation Q0 x = 0 HT2005: Reactor Physics T10: Diffusion of Neutrons
34
T10: Diffusion of Neutrons
Point Source in Infinite Medium r HT2005: Reactor Physics T10: Diffusion of Neutrons
35
T10: Diffusion of Neutrons
Plane Infinite Source in Slab Medium Q0 Infinite: Slab: x = -a/2 x = 0 x = a/2 HT2005: Reactor Physics T10: Diffusion of Neutrons
36
T10: Diffusion of Neutrons
Plane Infinite Source with Reflector 2 1 Q0 1 2 Reflector Reflector a Bare slab HT2005: Reactor Physics T10: Diffusion of Neutrons
37
T10: Diffusion of Neutrons
Age of Neutrons Energy q(E) - number of neutrons, which per cubic-centimeter and second pass energy E. q(E) = [n×cm-3 s-1] X-sections depend on E: D(E),Σs(E),... E0 Q E q(E) Slowing down medium: Mean Total Slowing down distance Can be shown HT2005: Reactor Physics T10: Diffusion of Neutrons
38
T10: Diffusion of Neutrons
Fermi’s Age Equation q(E+dE) E+dE E q(E) HT2005: Reactor Physics T10: Diffusion of Neutrons
39
Fermi’s Age Equation II
τ ~ time HT2005: Reactor Physics T10: Diffusion of Neutrons
40
Solutions to the Age Equation
No absorption x = 0 r No absorption HT2005: Reactor Physics T10: Diffusion of Neutrons
41
Slowing Down Density for Different Fermi’s Ages
HT2005: Reactor Physics T10: Diffusion of Neutrons
42
T10: Diffusion of Neutrons
Migration Area (Length) Thermal neutron absorbed Fast neutron borne r rs rth Fast neutron thermalized HT2005: Reactor Physics T10: Diffusion of Neutrons
43
Diffusion and Slowing Down Parameters for Various Moderators
HT2005: Reactor Physics T10: Diffusion of Neutrons
44
Neutrons in Multiplying Medium
Assumption: HT2005: Reactor Physics T10: Diffusion of Neutrons
45
Principles of a Nuclear Reactor
Leakage N2 2 MeV N1 Fast fission Energy n n/fission Slowing down Resonance abs. ν ≈ 2.5 Non-fissile abs. Non-fuel abs. 1 eV Fission 200 MeV/fission Leakage HT2005: Reactor Physics T10: Diffusion of Neutrons
46
T10: Diffusion of Neutrons
HT2005: Reactor Physics T10: Diffusion of Neutrons
47
T10: Diffusion of Neutrons
HT2005: Reactor Physics T10: Diffusion of Neutrons
48
T10: Diffusion of Neutrons
Buckling as Curvature Large core Small core HT2005: Reactor Physics T10: Diffusion of Neutrons
49
Criticality Condition
HT2005: Reactor Physics T10: Diffusion of Neutrons
50
T10: Diffusion of Neutrons
Eigenvalues Transport operator Differential operator Matrix HT2005: Reactor Physics T10: Diffusion of Neutrons
51
T10: Diffusion of Neutrons
Eigenfunctions Only one is physically meaningful a HT2005: Reactor Physics T10: Diffusion of Neutrons
52
Solution of a Reactor Equation
HT2005: Reactor Physics T10: Diffusion of Neutrons
53
T10: Diffusion of Neutrons
HT2005: Reactor Physics T10: Diffusion of Neutrons
54
T10: Diffusion of Neutrons
Rectangular Cylinder Sphere HT2005: Reactor Physics T10: Diffusion of Neutrons
55
Critical Size of a Reactor
We assume bare homogenous reactor For thermal neutrons we get: Slowing down neutrons: Assumption: Reactor is sufficiently big to treat neutron spectrum independently of space variables At the beginning slowing down density is t=0 HT2005: Reactor Physics T10: Diffusion of Neutrons
56
T10: Diffusion of Neutrons
For t > 0 one has to take into account resonance capture through p – resonance passage factor. HT2005: Reactor Physics T10: Diffusion of Neutrons
57
Non-Leakage Probability
HT2005: Reactor Physics T10: Diffusion of Neutrons
58
T10: Diffusion of Neutrons
Volume of an cylindrical reactor with buckling derived from a critical equation – the smallest critical size: HT2005: Reactor Physics T10: Diffusion of Neutrons
59
T10: Diffusion of Neutrons
Minimum Volume L V = V(R) L = L(R) L R D = 1.08 L HT2005: Reactor Physics T10: Diffusion of Neutrons
60
Optimum Core Dimensions
Core shape Optimum dimensions Minimal volume Cube Cylinder Sphere HT2005: Reactor Physics T10: Diffusion of Neutrons
61
T10: Diffusion of Neutrons
Migration Area HT2005: Reactor Physics T10: Diffusion of Neutrons
62
T10: Diffusion of Neutrons
Improved Diffusion HT2005: Reactor Physics T10: Diffusion of Neutrons
63
T10: Diffusion of Neutrons
The END HT2005: Reactor Physics T10: Diffusion of Neutrons
64
CRITICALITY EQUATION - physical interpretation
HT2005: Reactor Physics T10: Diffusion of Neutrons
65
Thermal non - leakage factor:
Thermal leakage: Thermal non - leakage factor: HT2005: Reactor Physics T10: Diffusion of Neutrons
66
T10: Diffusion of Neutrons
Derivation Number of collisions in dV Neutrons scattered towards dA Neutrons through dA per 1 second HT2005: Reactor Physics T10: Diffusion of Neutrons
67
T10: Diffusion of Neutrons
HT2005: Reactor Physics T10: Diffusion of Neutrons
68
T10: Diffusion of Neutrons
Delayed Neutrons HT2005: Reactor Physics T10: Diffusion of Neutrons
69
T10: Diffusion of Neutrons
HT2005: Reactor Physics T10: Diffusion of Neutrons
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.