Download presentation
Published byAmber Debra Gibbs Modified over 9 years ago
2
Double Beta Decay L=2 2: (A,Z) (A,Z+2) + 2e- + 2ne
(Observed for several nuclei, test of nuclear matrix elem. calculations) L=2 0: (A,Z) (A,Z+2) + 2e- d u e- W- ne 1/t = G(Q,Z) |Mnucl|2 mee2, mee = |i Uei ² mi |
3
Range of mee derived from solar and atmospheric oscillation experiments
mee = f(m1, m²sol, m²atm, 12 , 13, -) from oscillation experiments F.Feruglio, A. Strumia, F. Vissani, NPB 637 Inverted hierarchy Normal hierarchy Degenerate Lightest neutrino (m1) in eV | mee| in eV 90% CL Negligible errors from oscillations; width due to CP phases Goal of next generation experiments: ~10 meV Lower bounds!
4
Experimental status of running experiments
Heidelberg – Moscow: MPIK Heidelberg, Kurchatov Institute Location: Gran Sasso Underground Laboratory Source = detector, 76Ge (10.9 kg isotopically enriched ( 86%)): Q = keV CUORICINO (Cryogenic Underground Observatory for Rare Events): Firenze, Gran Sasso, Insubria, LBNL, Leiden, Milano, Neuchatel, South Carolina, Zaragoza Location: Gran Sasso Underground Laboratory Source = detector, TeO2 (40 kg) 130Te (13 kg): Q = 2615 keV NEMO3 (Neutrino Ettore Majorana Observatory): CENBG Bordeaux, Charles Univ. Prague, FNSPE Prague, INEEL, IReS Strasbourg, ITEP Moscow, JINR Dubna, Jyvaskyla Univ., LAL Orsay, LPC Caen, LSCE Gif, Mount Holyoke College, Saga Univ, UCL London Location: Frejus Underground Laboratory Source detector study of different nuclei; main target 100Mo (6.9 kg): Q = keV NB: More than one nuclei needed to check systematics from nuclear matrix elements
5
NEMO3 Start data taking February 2003 Source in form of foils:
2 TRACKING VOLUME 3 CALORIMETER Tracking volume with Geiger cells e+/e- separation by magnetic field Plastic scintillators for calorimetry and timing Start data taking February 2003
6
NEMO3: first results t1/22n (y) = 7.8 ± 0.09 stat ± 0.8 syst 1018 y
First results on 100Mo (650 h) V. Vasiliev (Nemo coll.) 2n spectrum t1/22n (y) = 7.8 ± 0.09 stat ± 0.8 syst y t1/20n (y) > 6 y Expected final sensitivity: 0.2 – 0.4 eV (6.9 kg) mee < 1.8 – 2.9 eV (C. Augier, ECT Trento)
7
CUORICINO 0.8 m Start data taking february 2003
Energy resolution: 7 keV FWHM TeO2 (40 kg) 130Te (13 kg): Q = 2615 keV 2615 keV 208Tl single escape 208Tl double escape 208Tl Calibration spectrum 0.8 m (A. Giuliani, Taup03)
8
CUORICINO: first results
anticoincidence background spectrum, only 5x5x5 crystals Background level 0.23 .04 c/keV/kg/y t1/20n > 5 y mee < 0.58 – 1.4 eV (90% c.l.) 3 y sensitivity (with present performance): 1 1025 y mee < 0.13 – 0.31 eV (A. Giuliani, Taup03)
10
New concept under study: Ge in liquid Ar – new ideas
Replace LN (LN=0.8 g/cm³, 77 K) by LAr (LN=1.4 g/cm³, 87 K) LAr/ LN (2.615 MeV) = 0.62 Scintillation yield: 40,000 photons / MeV Active shielding medium! (4 x organic liquid scintillator) Emission in XUV (~130 nm) Wavelength shifting required : Organic WLS or Xe addition Essential for cosmogenic activities: Co-60, Ge-68, … What’s about Ar-39, Ar-42 ?
11
76Ge: sensitivity, exposure and background
0.0001 0.001 0.01 0.06 / (kg year keV) HEIDELBERG-MOSCOW Collaboration, Eur. Phys. J. A 12 (2001) 147: M·T = 35.5 kg y, b = 6 ·10-2 (kg y keV), DE ~ 4.2 keV Sensitivity (with bgd): mee (b DE / M T)1/4
12
Basic concepts about 76Ge in liquid N2
background sources external to crystals clean contacts and support can be realized minimization of surface contaminations purification of liquid nitrogen Operation of ‘naked’ Ge-detecctors In liquid nitrogen: G. Heusser, Ann. Rev. Nucl. Part. Sci. (1995) GENIUS proposal: H.V. Klapdor-Kleingrothaus, J. Hellmig, M. Hirsch (1997); H.V. Klapdor–Kleingrothaus, L. Baudis, G. Heusser, B. Majorovits, H. Paes (1999), hep-ph/
13
LN2 shield against external background radiation
LNGS: ~ 107 /m²/d (2.6 MeV ) ~6 m 10-4 (kg keV y) -1 LN2
14
LNGS ~14 m 14.80 m
15
LN/LAr facility: Design study (b)
17
How small could a tank be?
Lead layer submersed in LAr 232Th activity of lead tank Ø Preliminary results 30Bq/kg
18
Active suppression of internal bgd: example 60Co
Cosmogenic activities: Production after completion of crystal growth Exposure to cosmic rays above ground for 10 days: 0.18 Bq/kg [GENIUS]
19
60Co: no vs. active suppression
Reduction factor ~100 Reflector (VM2000) Wavelength shifter ,
20
Bgd. in LAr: example 42Ar 42Ar / natAr = 3· (30 Bq/kg) [Barabash et al., LNGS]
21
42Ar: no vs. active suppression
Reflector (VM2000) Wavelength shifter , 1,2 No issue for DBD even without active suppression!
22
External bgd: example 2.615 MeV gamma 232Th (208Tl) in lead shield
Flux from rocks(0.5 Bq / kg) and concrete (5 Bq / kg) @ LNGS: 3.5 ·107 / (m² d) [BOREXINO, Laubenstein] New lead for shielding under study with LNGS: <30 Bq / kg
23
232Th (208Tl): no vs. active suppr.
Reflector (VM2000) Wavelength shifter Lead Simulation for 30 Bq/kg, inner-Ø: 2m, height: 2 m
24
Summary and outlook (1) DBD unique tool to study neutrino properties: Majorana vs. Dirac, mass scale, hierarchy, CP phases Oscillation data make distinct predictions for mee (NH: 1-4 meV, IV: eV, DG: <1 eV (90% CL)) Second generation experiments (NEMO3, CUORICINO) started data taking; sensitive to check HdM claim within next years: ~ eV
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.