Presentation is loading. Please wait.

Presentation is loading. Please wait.

High Resolution X-ray Grating and Mirror Development at MIT Mark Schattenburg Space Nanotechnology Laboratory Kavli Institute for Astrophysics and Space.

Similar presentations


Presentation on theme: "High Resolution X-ray Grating and Mirror Development at MIT Mark Schattenburg Space Nanotechnology Laboratory Kavli Institute for Astrophysics and Space."— Presentation transcript:

1 High Resolution X-ray Grating and Mirror Development at MIT Mark Schattenburg Space Nanotechnology Laboratory Kavli Institute for Astrophysics and Space Research X-ray Science Analysis Group (XRSIG) AAS Annual Meeting Washington, DC January 5, 2014

2 High-resolution X-ray Diffraction Gratings and Mirrors Critical-angle transmission (CAT) gratings Thin-shell x-ray mirror fabrication: – Thermal air bearing slumping – Ion implant figure correction Schattenburg -- XR-SIG meeting, Jan. 5, 2014 2

3 Key Team Members Dr. Mark Schattenburg PI, Lab Director Dr. Alex Bruccoleri Izentis, LLC Nanofabrication Martin Klingensmith Electrical Engineer Vacuum & Plasma Systems Jay Fucetola Mech E Lithography Dong Guan Mech E Nanofabrication Dr. Ralf Heilmann Co-I, Associate Director Brandon Chalifoux Mech E Ion Implant Edward Sung Lam Research Air-Bearing Slumping Schattenburg -- XR-SIG meeting, Jan. 5, 2014 3

4 CAT Prototype Grating Fabrication Progress Schattenburg -- XR-SIG meeting, Jan. 5, 2014 4

5 Gold (Chandra) vs. CAT gratings Chandra grating (1994) CAT grating (2008) Gold Silicon Scanning Electron Micrographs of Grating Cross Sections (to scale) Gold gratings – Electroplated gold bars – 200 nm pitch, 100 nm width – 550 nm height for aspect ratio 5.5 CAT gratings – Etched silicon bars – 200 nm pitch, 40 nm width – 6000 nm height for aspect ratio 150 Schattenburg -- XR-SIG meeting, Jan. 5, 2014 5

6 CAT grating combines advantages of transmission gratings (relaxed alignment, low weight) with high efficiency of blazed reflection gratings. Blazing achieved via reflection from grating bar sidewalls at graze angles below the critical angle for total external reflection. High energy x rays undergo minimal absorption and contribute to effective area at focus. CAT grating principle Efficiency comparison with Chandra gratings CAT Grating Principle Schattenburg -- XR-SIG meeting, Jan. 5, 2014 6

7 CAT Grating Spectrometer Concept Optical Design: Wolter I telescope mirrors. Diffraction gratings in converging beam just aft of mirrors. Gratings, camera, and focus share same Rowland torus. Blazed gratings; only orders on one side are utilized. Only fraction of mirrors is covered: “sub-aperturing” boosts spectral resolution. Flight mirror assembly view z CAT grating arrays Advantages: low mass relaxed alignment & figure tolerances high diffraction efficiency up to 10X dispersion of Chandra HETGS no positive orders (i.e., smaller detector) Focal plane view Schattenburg -- XR-SIG meeting, Jan. 5, 2014 7

8 Prototype CAT Grating Schattenburg -- XR-SIG meeting, Jan. 5, 2014 8

9 Prototype CAT Grating Detail 200 nm Large area (31x31 mm 2 ) gratings with two levels of support Schattenburg -- XR-SIG meeting, Jan. 5, 2014 9

10 Cleaved Prototype Grating 200 nm pitch CAT grating bars 5 µm L1 Support Schattenburg -- XR-SIG meeting, Jan. 5, 2014 10

11 Silicon Deep-Etch Process A two-step process is used to form the CAT grating bars: A deep reactive-ion etch (DRIE) process is used to etch high aspect-ratio structures This is followed by a potassium hydroxide (KOH) polishing step to smooth sidewalls Silicon Mask Silicon SF 6 F SF 5 + e-e- C4F8C4F8 C3F6C3F6 e-e- CF 2 Etch silicon, Ion trajectories vertical Passivate silicon Isotropic neutral trajectory Etch silicon Deep-etched structure Scalloped Sidewalls e-e- CF 2 C3F6C3F6 SiF 4 SF 6 F SF 5 + e-e- SiF 4 Schattenburg -- XR-SIG meeting, Jan. 5, 2014 11

12 Process Development Results 12 Previous Deep-Etch Process Improved Deep-Etch Process Grating after KOH Polishing Schattenburg -- XR-SIG meeting, Jan. 5, 2014

13 Pegasus Plasma Etch Tool Installation Tool in SNL clean room Its here! Pump, chillers and heat exchanger in chase New facility hook-ups Schattenburg -- XR-SIG meeting, Jan. 5, 2014 13

14 X-ray Mirrors Fabrication by Air Bearing Slumping Schattenburg -- XR-SIG meeting, Jan. 5, 2014 14

15 X-ray Telescope Optics Tradeoffs Chandra mirrors: ~0.5 arcsecNuSTAR mirrors: ~60 arcsec High resolution High cost Small aperture Lower resolution Lower cost Large aperture Photo: nasa.gov Schattenburg -- XR-SIG meeting, Jan. 5, 2014

16 Thermal Shaping at NASA GSFC Plus: Excellent low spatial frequency fidelity Minus: 48+ hour slumping cycle time Mid-range ripples due to anti-stick coating Freeman, et al., Advances in the active alignment system for the IXO optics. Proc. SPIE 2010 Zhang, et al., Lightweight and high angular resolution x-ray optics for astronomical missions. Proc. SPIE 2011 Schattenburg -- XR-SIG meeting, Jan. 5, 2014

17 Pathway to High Resolution Thin X-ray Optics Non-contact slumping Ion implantation figure correction Non-contact slumping enables high resolution segmented thin optics:  Achieve good figure with no mid-spatial frequency errors  Residual figure error corrected with ion implantation  Fast, low-cost process Contact slumping Schattenburg -- XR-SIG meeting, Jan. 5, 2014 17

18 Thermal Shaping at MIT Upper plenum Lower plenum Slumping on air bearings mandrels: Viscous creeping flow supports glass Contact-less slumping allows rapid and “soft” slumping Air supply Glass sheet Schattenburg -- XR-SIG meeting, Jan. 5, 2014 18

19 Gen 5.2 Slumping Tool Demonstrates contact-less slumping  High temperature operation  Simple gap control  Fiber position sensors and gravity tilt actuators set glass position under servo control Schattenburg -- XR-SIG meeting, Jan. 5, 2014 19

20 Slumping results Good repeatability over entire substrate P-V error: 12.5 μm RMS slope error: 37.1 arcsec X 38.0 arcsec Y P-V error: 2.7 μm RMS slope error: 6.5 arcsec X 9.5 arcsec Y Repeatability of same order as thickness variation (60 mm) 0.7 μm 3 arcsec X 4 arcsec Y Schattenburg -- XR-SIG meeting, Jan. 5, 2014 20

21 X-ray Mirror Figure Correction via Ion Implantation Schattenburg -- XR-SIG meeting, Jan. 5, 2014 21

22 Ion Implantation Controllable parameters Ion species and energy Ion dose and current Beam position Beam size Sub-surface stress caused by damage and ion stuffing Schattenburg -- XR-SIG meeting, Jan. 5, 2014 22

23 Simulated Implant Depth Implanting through high-Z surface layers is possible Monte Carlo simulations performed with SRIM (www.srim.org) Schattenburg -- XR-SIG meeting, Jan. 5, 2014 23

24 Initial Experiments Understanding stress from ion implantation Substrate properties Measured data Integrated stress hshs Substrate Implanted layer Implanted substrate Uniform implant doseRadius of curvature changes according to Stoney’s equation E – Young’s modulus ν – Poisson’s ratio R – radius of curvature h s – substrate thickness Schattenburg -- XR-SIG meeting, Jan. 5, 2014 24

25 Spherical Curvature Correction Spherical curvature reduced >10x All other figure errors unaffected +5.5 μm -5.5 μm +4.4 μm -4.4 μm Before implant: 9μm curvatureAfter implant: -0.7μm curvature Implant details Substrate: Silicon 100mm x 400 μm DSP Species: Si+ Ion energy: 150 keV Schattenburg -- XR-SIG meeting, Jan. 5, 2014 25

26 Astigmatism Correction Preliminary Experimental Result Measured shape change (μm) Successful result:  One sample tested  Shape change shows Astigmatism only Implant details Substrate: Silicon 100mm DSP Species: Si+ Ion energy: 150 keV Ion dose: 5.88x10 13 ions/cm 2 Schattenburg -- XR-SIG meeting, Jan. 5, 2014 26

27 Schattenburg -- XR-SIG meeting, Jan. 5, 2014 27 Correction of Wolter optics Preliminary Simulations

28 Very low stresses required! Schattenburg -- XR-SIG meeting, Jan. 5, 2014 28 Correction of Wolter optics Preliminary Simulations

29 Summary CAT Gratings  All key technical fabrication steps have been demonstrated  Extensive modeling and synchrotron tests  New plasma tool will accelerate prototype fabrication effort  Shooting for TRL 5/6 by end of 2014 Air Bearing Slumping  First non-touch tool demonstrated  Tool improvements to improve reliability and repeatability  Build new tool to slump Wolter optics Ion Impant Figure Correction  Will build custom implanter or modify on-campus system  Further understand implant stress  Improve metrology  Correct Wolter optics Schattenburg -- XR-SIG meeting, Jan. 5, 2014 29 Many thanks to the NASA APRA and SAT Programs!

30 Questions? Schattenburg -- XR-SIG meeting, Jan. 5, 2014 30


Download ppt "High Resolution X-ray Grating and Mirror Development at MIT Mark Schattenburg Space Nanotechnology Laboratory Kavli Institute for Astrophysics and Space."

Similar presentations


Ads by Google