Download presentation
Presentation is loading. Please wait.
Published byToby Oscar Charles Modified over 9 years ago
2
Beyond Mendelian Inheritance
3
INCOMPLETE DOMINANCE -NEITHER ALLELE IS COMPLETELY DOMINANT OVER THE OTHER -THE HETEROZYGOUS PHENOTYPE IS A BLENDING OF THE TWO HOMOZYGOUS PHENOTYPES Red flower = RR Pink flower = Rr White flower = rr
4
Sample problem: Red snapdragon flowers (R) are incompletely dominant to white snapdragon flowers (r). A heterozygous flower is crossed with a white flower. What is the genotypic and phenotypic ratios of the offspring?
5
CODOMINANCE -BOTH THE DOMINANT ALLELES ARE EXPRESSED IN THE HETEROZYGOUS INDIVIDUAL. -USE 2 DIFFERENT CAPITAL LETTERS TO RERESENT THE DOMINANT ALLELES
6
Sample problem: Red and white coat color are co-dominant in cattle. Two heterozygous cows are crossed. What is the genotypic and phenotypic ratio of the offspring?
7
MULTIPLE ALLELES Several dominant alleles and/or recessive alleles can be combined to create multiple phenotypes.
8
Blood Type In human blood, type A blood and type B blood are codominant. However, there is a recessive allele for type O. Type A and B show regular dominance over this recessive allele. Thus, the only way to be type O is to be homozygous recessive.
9
BLOOD TYPECAN RECEIVE FROM:CAN DONATE TO: Type A Type B Type AB Type O
10
Human Blood Genotypes and Phenotypes Phenotype Genotype(s) 1. 2. 3. 4.
11
Sample Problem #1: Adam Sandler is homozygous for type A blood. Megan Fox is heterozygous for type B. If they have kids what will be the genotypic and phenotypic ratios of the possible kids?
12
Sample Problem #2: Jimmy Fallon has type O blood. Jennifer Aniston has type AB blood. If they have kids what will be the genotypic and phenotypic ratios of the possible kids?
13
Sample Problem #3: Channing Tatum has type A blood. Ms. Palmeri has type B blood. They have a baby with type O blood. How is this possible? Show your work!
14
Sex-Linked Traits Sex-linked traits are traits that are controlled by genes on the sex chromosomes –The X and Y chromosomes
15
Are they controlled by both sex chromosomes? Most sex-linked traits are controlled by genes on the X chromosome. This is because an X chromosome is much larger than a Y chromosome. A few traits are suspected to be controlled by genes on the Y chromosome, however there is less research about Y-linked traits.
16
Different Forms of Sex-linked Inheritance There are three different forms of sex- linked inheritance that we will be examining: –X-linked recessive inheritance –X-linked dominant inheritance –Y-linked inheritance
17
X-linked Recessive Inheritance X-linked recessive traits are traits resulting from a recessive allele on the X chromosome. There are over 100 different human conditions that are caused by recessive alleles found on the X chromosomes. X-linked recessive alleles are represented by a X, superscript lower case letter
18
X-linked Recessive Inheritance These traits tend to show up in males more than females. –Why?
19
X-linked Dominant Inheritance X-linked dominant traits are traits that result from the presence of a dominant allele on the X chromosome. Unlike X-linked recessive traits, females and males both require only ONE dominant allele in order to express the trait. X-linked dominant traits are represented by an X, superscript capital letter or a (+)
20
Polygenic Traits Most of your traits are controlled by the interaction of many genes. Multiple genes working together produce a continuous distribution in a “Bell Shape” curve of degrees.
21
Examples of Polygenic Traits Body Type Height Skin Color Hair color Eye color Intelligence We often see the famous “Bell Curve” Individual genes of a polygenic trait follow Mendel's laws but together do not produce Mendelian ratios.
24
The Environment Heavily Influences Polygenic traits
25
Recent studies show … Hypertension Diabetes Cancers Allergies Cardiovascular diseases Behavioral traits (alcoholism and phobias) …..have some genetic link but also environmental explanation.
26
Environmental Effects Expression of some genes may be impacted by environment Gene for pigment production expressed in cooler regions of body
27
Another example of environmental influence: Hydrangeas – same genotype, different environments different color flowers Acid pH Alkaline pH
28
Epistasis –Action of genes at one loci modify expression genes at another loci Effects often complex –Examples Normal expression of ABO blood type depends on functional fucosyltransferase 1 –Recessive = no expression/attachment of antigen to blood cell Other examples: –Anthocynanin coloration in corn –Coat color in Labrador dogs
29
Epistasis One gene affects the expression of a second gene Example: H gene is epistatic to the ABO gene. H protein attaches the A or B protein to the cell surface hh genotype = no H protein Without H protein the A or B antigens can not be attached to the cell All hh genotypes have the phenotype of type O I A I A hh, I A i hh, I A I B hh, I B I B hh, I B i hh, and ii hh
30
Epistasis R.A.Emerson – 1918 9:7 ratio Purple:white corn Progeny must have at least 1 copy of dominant allele to produce purple seed
31
Epistasis in Labrador Dogs Bb or BB dark (black) pigment produced bb light (brown) pigment produced Ee or EE deposition of melanin ee deposition of pigment blocked
32
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. eebb Yellow fur; brown nose, lips, eye rims eeB_ Yellow fur; black nose, lips, eye rims ee No dark pigment in fur Yellow Lab E_ Dark pigment in fur E_bb Chocolate Lab Brown fur, nose, lips, eye rims E_B_ Black Lab Black fur, nose, lips, eye rims
33
Pleiotropy Pleiotropy Pleiotropy refers to an allele which has more than one effect on the phenotype. This can be seen in human diseases such as cystic fibrosis or sickle cell anemia. In these diseases, multiple symptoms can be traced back to one defective allele.
34
Pleiotropic effects Occurs when an allele has >1 effect on phenotype Examples are: –Sickle cell anemia –Cystic fibrosis
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.