Download presentation
Presentation is loading. Please wait.
Published bySusan Johnston Modified over 9 years ago
1
Biology 2250 Principles of Genetics Announcements Lab 4 Information: B2250 (Innes) webpage Lab 4 Information: B2250 (Innes) webpage download and print before lab. download and print before lab. Virtual fly: log in and practice Virtual fly: log in and practice http://biologylab.awlonline.com/ http://biologylab.awlonline.com/http://biologylab.awlonline.com/
2
Quiz – 3 answers http://webct.mun.ca:8900/ All quizzes on WebCT for Review Office Hours: 1:30 – 2:30 Tue, Wed., Thr or by appointment: 737-4754, dinnes@mun.ca
3
Mendelian Genetics Topics: -Transmission of DNA during cell division -Transmission of DNA during cell division Mitosis and Meiosis Mitosis and Meiosis - Segregation - Segregation - Sex linkage (problem: how to get a white-eyed female) - Sex linkage (problem: how to get a white-eyed female) - Inheritance and probability - Inheritance and probability - Independent Assortment - Independent Assortment - Mendelian genetics in humans - Mendelian genetics in humans - Linkage - Linkage - Gene mapping - Gene mapping -Gene mapping in other organisms (fungi, bacteria) (fungi, bacteria) - Extensions to Mendelian Genetics - Gene mutation - Chromosome mutation (- Quantitative and population genetics)
4
Linkage: Summary Recombination: generates new combinationsRecombination: generates new combinations (inter and intrachromosomal) (inter and intrachromosomal) Genetic maps:Genetic maps: - genes linked on the same chromosome - genes linked on the same chromosome - location of new genes relative to genes - location of new genes relative to genes already mapped already mapped
5
Linkage: Summary Hunting for genes (Human Diseases)Hunting for genes (Human Diseases) - genetic markers: DNA variation - genetic markers: DNA variation - co-inheritance with diseases using pedigree - co-inheritance with diseases using pedigree information information - recombinants used to estimate linkage - recombinants used to estimate linkage
6
Extensions to Mendelian Genetics Ch. 14 From Gene to Phenotype Readings: Ch. 14 p. 454 – 473 Problems: Ch. 14: 2, 3, 4, 5, 6, 7
7
Chapter 1 Genes, environment, organism Phenotype = Phenotype = gene + env. + gene x env. + gene x gene gene + env. + gene x env. + gene x gene Mendelian Genetics: Genotype Phenotype Genotype Phenotype Dominance ? Dominance ?
8
G x E interaction
9
Extensions to Mendelian Genetics (Gene Phenotype) 1. Dominance 2. Multiple alleles 3. Pleiotropy 4. Epistasis (gene interaction) 5. Penetrance and expressivity
10
Gene interaction 1.Alleles at one gene Dominance 2.Different genes Epistasis
11
1. Dominance Location of heterozygote between two homozygotes 1. Complete 1. Complete 2. No dominance 2. No dominance 3. Incomplete (partial) 3. Incomplete (partial) 4. Codominance 4. Codominance
12
Homozygotes: A 1 A 1 A 2 A 2 Heterozygote: A 1 A 2
13
Incomplete Dominance redwhite pink
14
Codominance Human Blood Groups: Human Blood Groups: Genotype Phenotype ** AA A AA A AB AB co-dominance AB AB co-dominance BB B BB B ** antigen protein on RBC
15
Codominance Molecular Markers Molecular Markers AB AA BB BB AB Allele Heterozygote distinguished from homozygotes
16
2. Multiple Alleles (ABO Blood groups - 3 alleles ) Genotype Phenotype (6) (4) (6) (4)--------------------------------------------- OO O recessive OO O recessive AA, AO A dominant BB, BO B dominant AB AB co-dominant AB AB co-dominant---------------------------------------------
17
Multiple alleles in clover
18
Test for Allelism Possibilities: 1. alleles for the same gene - all crosses show Mendelian ratios (1:1 3:1 1:2:1) Mendelian ratios (1:1 3:1 1:2:1) 2. more complex inheritance (> 1 gene) or
19
Example: white, yellow, pink Example: white, yellow, pink Cross F 1 F 2 Cross F 1 F 2 white x yellow yellow 3:1 yellow : white white x pink pink 3:1 pink : white yellow x pink pink 3:1 pink : yellow 3 alleles: w y p 3 alleles: w y p 6 genotypes: w w y y p p p w y w y p 6 genotypes: w w y y p p p w y w y p
20
3. Pleiotropy (one gene affects > 1 trait) Example: Mouse Gene affects: Gene affects: 1. coat colour (, yellow) 1. coat colour (, yellow) 2. survival 2. survival AA AA Homozygous wildtype dark
21
YellowParents zzz
22
Crosses A. x -----> all A. x -----> all B. x ---> 1/2 1/2 B. x ---> 1/2 1/2 C. x ----> 2/3 1/3 C. x ----> 2/3 1/3
23
Explanation A. AA x AA all AA B. AA x A Y A ½ A Y A, ½ AA C. A Y A x A Y A ¼ AA ½ A Y A ¼ A Y A Y dies 1 : 2 1 : 2 1/3 2/3 1/3 2/3
24
Interpretation Gene affects both coat colour and survival survival 1. A Y dominant to A for coat colour 2. A Y recessive lethal for survival
25
Pleiotropy Phenotype Phenotype Genotype coat colour survival Genotype coat colour survival A A dark alive A A dark alive A A Y yellow alive A A Y yellow alive A Y A Y ? dead A Y A Y ? dead dark
26
Pleiotropy Gene A Trait 1 Trait 1 Trait 2 Trait 2 Epistasis Gene A Trait Trait Gene B G + E = P Gene interaction
27
4. Epistasis (gene interaction) More than one gene affects a character One gene pair masks or modifies the expression of another gene pair AABB x aabb ----> AaBb x AaBb ---> F 2 AABB x aabb ----> AaBb x AaBb ---> F 2 F 1 F 1Dihybrid
28
F2F2F2F2 AaBb x AaBb A- B- 9/16 A- bb 3/16 aa B- 3/16 aa bb 1/16 4 distinct phenotypes (2 traits) (peas: shape, colour) Epistasis: Gene A and Gene B interact phenotype of 1 trait Gene A and B unlinked Epistasis
29
Epistasis (BbEe X BbEe) Labrador retriever Coat Colour (B and E genes) F 2 Ratio Genotype Phenotype Ratio 9/16 B- E- black 9/16 3/16 B- ee gold 4/16 3/16 bb E- brown 3/16 1/16 bb ee gold Gene E allows colour deposition Gene E allows colour deposition 1.
30
Allele E Allele B Allele E Allele B Golden brown black B- ee bb E- B- E- B- ee bb E- B- E- bb ee bb ee Epistasis
31
Epistasis (AaBb X AaBb) Example: Flower petal colour F 2 Ratio Genotype Phenotype Ratio 9/16 A- B- Purple 9/16 3/16 A- bb White 7/16 3/16 aa B- White 1/16 aa bb White 2.
32
Gene B Gene A Gene B Gene A colourless colourless purple (white) (white) A-bb aaB- A- B- aabb
33
5. Penetrance and Expressivity Phenotype: genotype, genetic background, and environment and environment Variable Expression: Penetrance Expressivity Expressivity
34
Penetrance: Penetrance: percentage of individuals that show some degree of expression of a mutant genotype percentage of individuals that show some degree of expression of a mutant genotype
35
Example: Polydactyly (P) extra digits pp Pp PP pp Pp PP normal 10 % normal polydactyly 90 % polydactyly 90 % polydactyly
36
Expressivity: degree that a given genotype is expressed phenotypically Expressivity: degree that a given genotype is expressed phenotypically Example: Pp individuals which do express the extra digits can vary the extra digits can vary (a) extra digit on each hand and foot (a) extra digit on each hand and foot (b) extra digit on one hand only (b) extra digit on one hand only (c) complete digit or vestige (c) complete digit or vestige
37
Same genotype
38
Variable expressivity of piebald spotting in beagles
39
Summary - segregation and independent assortment can explain a variety of patterns of can explain a variety of patterns of genetic variation genetic variation -Phenotype = Genotype + Environment Genetic interaction: genotype, epistasis, Genetic interaction: genotype, epistasis, genetic background genetic background
40
Mutation Source of genetic variation: Gene Mutation - somatic, germinal - somatic, germinal Chromosome mutations (Ch. 11 prob. 1, 2) Chromosome mutations (Ch. 11 prob. 1, 2) - structure - structure - number - number
41
Mutation Gene Mutation a + ------>a Forward mutation a ------>a + Reverse mutation 1. Somatic mutation - not transmitted to progeny - not transmitted to progeny 2. Germinal Mutation - transmitted to next generation - transmitted to next generation
42
Somatic Mutations Petal colour: Rr red rr white Plant genotype: Rr mutation: Rr rr mutation: Rr rr
44
Somatic mutations
45
Germinal mutations AA (blue) Aa self aa(white)
46
Mutant Phenotypes MorphologicalLethalBiochemicalResistance Conditional - DTS (David T. Suzuki) (permissive and restrictive conditions) (permissive and restrictive conditions)
47
Mutation Frequency Drosophila eye-colour w + w 4 x 10 -5 per gamete Humans Hemophilia (X-linked recessive) 4 x 10 -5 per gamete (1 in 25,000) (1 in 25,000) “It is estimated that up to 30% of cases of hemophilia have no known family history. Many of these cases are the result of new mutations. This means that hemophilia can affect any family.”
48
Mutation Frequency Drosophila eye-colour w + w 4 x 10 -5 per gamete Mutation rate for a particular gene: very low (efficient repair) but, Large number of genes in a genome: mutations occur every generation 4 x 10 -5 x 50,000 genes = 2 mutations
49
Gene Mutation Mutations are rare and random Ultimate source of genetic variation Cancer: Proto-oncogene oncogene cancer mutation mutation
50
Chromosome Mutations Gene mutation: detected genetically Chromosome Mutations: detected genetically and cytologically cytologically 1. Structure 1. Structure 2. Number 2. Number
51
Chromosome Mutations 1. Structure Ch. 11 363 – 372 1. Structure Ch. 11 363 – 372 2. Number Ch. 11 p. 350 - 363 2. Number Ch. 11 p. 350 - 363
52
1. Chromosome Structure Karyotype: 1. size and number 2. centromere position: telocentric telocentric acrocentric acrocentric metacentric metacentric submetacentric submetacentric acentric acentric (lost)
53
Chromosome Structure 3. Heterochromatin pattern - heterochromatin (dark) - heterochromatin (dark) - euchromatin (light) - euchromatin (light) 4. Banding patterns: a) staining Giemsa bands a) staining Giemsa bands b) polytene chromosomes (flies) b) polytene chromosomes (flies)
54
G-bands
55
Paint of Chr-22
56
“Paint”
57
Structural Abnormalities Normal a b c d e f Normal a b c d e f 1. Deletion a c d e f 2. Duplication a b b c d e f 3. Inversion a e d c b f 4. Translocation a b c d j k g h i e f a b c d j k g h i e f
58
Structural Abnormalities 1. Deletions: deletion homozygote---->usually lethal deletion homozygote---->usually lethal deletion heterozygote----> viable deletion heterozygote----> viable deletion loop b (pairing of a c d homologues) a c d homologues) a c d deletion deletion
59
Deletion heterozygote deletion loop
60
Pseudodominance Deletion Heterozygote: deletion loop b (pairing of a c d homologues) + + + homologues) + + + deletion deletion Phenotype: + b + +
61
Deletion Mapping Prune pn
62
Structural Abnormalities Deletion: notch-wing (Drosophila) Phenotype Phenotype Genotype wing survival N + N + normal alive N + N + normal alive N + N notch alive N + N notch alive N N - dead N N - dead (recessive lethal) (recessive lethal)
63
Genetics of Deletions Reduced map distance ( chromosome shortened)Reduced map distance ( chromosome shortened) Recessive lethalRecessive lethal Deletion loop (detected during meiosis)Deletion loop (detected during meiosis)
64
Structural Abnormalities 2. Duplications: tandem duplication tandem duplication a b b c d a b b c d maintain original evolve new maintain original evolve new function function function function
65
deletion Tandem duplication Unequal crossing over
66
Bar Eye Mutation (Dominant)
67
Gene Duplication and Evolution Gene duplication - Evolution of new function Example: Hemoglobin genes - duplication Express in different stages: Express in different stages: embryo – fetus – adult embryo – fetus – adult
68
Hemoglobin: Alpha Beta Gamma ………..
69
Structural Abnormalities 3. Inversions - different gene order - usually viable - usually viable a b c d e f a b e d c f a b e d c f a b c d e f a b c d e f a b e d c f homozygote heterozygote homozygote N N N I I I N N N I I I normal (N) inversion (I) normal (N) inversion (I)
70
Cytological consequences of an Inversion Heterozygote: Inversion Loop a b c d e a d c b e X crossover Inversion Loop Fig. 11-21
71
Cytological consequences of an Inversion Heterozygote: Inversion Loop Cross-over within an inversion dicentric bridge (broken) dicentric bridge (broken) acentric fragment (lost) acentric fragment (lost) deletions deletions
72
Inversion heterozygote with crossing over Fig. 11-22
73
Inversion Heterozygote Reduced recombination frequency Reduced recombination frequency (suppression of crossing over) (suppression of crossing over) Semisterile Semisterile
74
4. Translocation a b c d j k g h i e f Translocation Heterozygote (meiosis) N1N1N1N1 T2T2T2T2 T1T1T1T1 N2N2N2N2
75
Translocation
76
Translocation Translocation heterozygote heterozygote Fig. 11-24
77
Translocation heterozygote Adjacent segregation T1T1 N1N1 N2N2 T2T2 inviable
78
Translocation heterozygote Alternate segregation T1T1 N1N1 N2N2 T2T2 viable
79
Translocation Change linkage relationships (position effects) (position effects) Change chromosome size Semisterile - unbalanced meiotic products normal aborted Corn Pollen % aborted = ??
80
Structural Abnormalities Normal a b c d e f Normal a b c d e f 1. Deletion a c d e f 2. Duplication a b b c d e f 3. Inversion a e d c b f 4. Translocation a b c d j k g h i e f a b c d j k g h i e f
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.