Download presentation
Presentation is loading. Please wait.
Published byOsborn Bradley Modified over 9 years ago
1
Pro/ENGINEER Concurrent Design Top Down Design & Large Assembly Management
2
Agenda Top-Down Design Philosophy Stages of Top Down Design 3D Design
Tip & Tricks Question & Answer
3
Objectives At the end of this tutorial, you will better understand how to: Capture knowledge, or design intent, allowing you to concentrate on significant issues by making the software perform tedious, repetitive calculations. Enable the framework for interchangeability of components allowing for high-velocity product development by supporting rapid iterations of product variations. Create a concurrent design environment by spreading project design responsibility across many organizational levels.
4
Top-Down Design Philosophy
5
Traditional Design Approach
“Bottom-Up Design” Design of individual components independent of the assembly Manual approach to ensure that components fit properly and meet the design criteria Components and those placed in sub-assemblies are brought together to develop the top-level assembly Errors are manually identified and modifications to each component are made to make the adjustment. As assembly grows, detecting these inconsistencies and correcting them can consume a considerable amount of time Top Level Assembly Component Design Component Design Component Design
6
Top-Down Design Philosophy
Method of placing critical information in a high-level location Communicating that information to the lower levels of the product structure Capturing the overall design information in one centralized location Design Information Component Component Component
7
Why should you use it? Benefits: Reduced design time
Reduced errors (right the first time) Increased quality Better project management visibility Concurrent engineering Confidence in top-level regeneration Knowledge of how modules interface Top-level change control
8
Example: to design an alternator...
What information should a designer need to work with most times? Neighboring Subassemblies 320MB Complete Top-Level Assembly 540 MB All Skeleton Models in Top-Level Assembly 70 MB Subassembly, with Skeleton Model containing all required information ~ 20 MB
9
Stages of Top Down Design
10
Stages of Top Down Design (TDD)
Conceptual Engineering Layouts and Engineering Notebook Preliminary Product Structure Model Tree, PDM (i.e. Benevolent Dictator) Capturing Design Intent Skeleton Models Manage Interdependencies Reference Control & Viewer Communication of Design Intent Copy & Publish Geometry Population of the Assembly Constraints & Component Interfaces
11
Conceptual Engineering Phase Layouts and Engineering Notebook
Stage 1 Conceptual Engineering Phase Layouts and Engineering Notebook Understand Existing Situation High-level Requirements Space Allocation Define New Space and Motion 2D Sketches 3D Models Rapid Iteration & Convergence Animations Capture Key Design Intent Parameters Notes Relations / Calculations Interfaces
12
Product Definition: Engineering Layout
What it is: First thing done in design cycle Used to evaluate key interface points Used to evaluate key components of project What it is Not: Three dimensional solids Fully detailed
13
Advantages of Using a Layout
Document design information in one centralized location Document design information before creating solid models Investigate design options without involving the entire assembly Easily make design changes because all of the design information is contained in one location
14
Preliminary Product Structure Phase Model Tree and PDM
Stage 2 Preliminary Product Structure Phase Model Tree and PDM Quickly define product hierarchy Before any of the components’ geometry is defined Intuitive, automatic mapping to “start models” Templates ensure all designs share the necessary common elements such as datums, layers, views, parameters, etc. Foundation for efficient task distribution Component Creation Methods Empty Components; Copy from start models Automatic assembly of default datums Unplaced & Partially-Constrained Components
15
#2 Product Definition: Assembly Structure
What it is: Virtual Assembly / BOM Used to organize assembly & assigning of design tasks Used to input non-geometrical data up-front What it is Not: Three dimensional solids Fully detailed Fully constrained
16
Advantages of Defining Preliminary Product Structure
Defining the product structure prior to defining geometry can assist you in organizing the assembly into manageable tasks that can be assigned to design teams or individual designers. Associate specific library parts (that are to be used on the project) with the assembly at the start of the design, preventing confusion later.
17
Advantages of Defining Preliminary Product Structure
Cont… Submit the assembly to Pro/INTRALINK or PDMLink (or FIT dictator) and assign models to the appropriate vaults or folders. Individual designers can focus on specific design tasks instead of on how their design is going to fit into the overall structure. Input non-geometrical information such as the part number, designer’s name, etc., at a very early stage.
18
Capturing Design Intent Phase Skeleton Models
Stage 3 Capturing Design Intent Phase Skeleton Models What needs to happen? Capture conceptual design parameters within the context of the assembly Capture & control critical object interfaces in a single, convenient location How? Skeleton Models… Centralized pathway for communication Facilitate task distribution Promote well-organized design environments Enable faster, more efficient propagation of change Special Treatment in BOMs, Simplified Reps, Drawings, Model Tree & Mass Property Calculations Uniquely supported Scope Control Setting
19
#3 Product Definition: Skeletons
What it is: Zero-mass geometry Exact location detail Minimized geometric detail What it is Not: Three dimensional solids Fully detailed
20
Advantages of Using Skeletons
Provides a centralized location for design data Simplifies assembly creation / visualization Aids in assembling mechanisms Minimizes unwanted parent-child relationships Allows you to assemble components in any order Controls propagation of external references
21
Manage Interdependencies Phase Reference Viewer & Reference Graph
Stage 4 Manage Interdependencies Phase Reference Viewer & Reference Graph Tools to Manage References External Reference Control Ensures Top-Down Design methodology is followed Incorporate design management rules directly into the design Ensures proper design reuse Model Tree Global Reference Viewer Reference Graph
22
Reference Control Benefits of Communicating Information From a Central Source Task distribution Concurrent modeling Managing external references Tools Layout Declaration Publish geometry Copy geometry The foundation is set … but topologically modifiable … it’s time for 3D. With Reference Control Manager, you are safe to create your parts directly in the assembly.
23
Hierarchy Top_level.asm Top_level_skeleton.prt Sub_assy_1.asm
Sub_assy_1_skeleton.prt Sub_assy_2.asm Sub_assy_2_skeleton.prt Sub_assy_x.asm Sub_assy_x_skeleton.prt
24
3D DESIGN … FINALLY!
25
Communication of Design Intent Phase Publish Geoms, Copy Geoms
Stage 5 Communication of Design Intent Phase Publish Geoms, Copy Geoms Publish Geometry Features Provides ability to pre-determine the geometry to be referenced by a Copy Geometry feature Allows designers to define their interfaces to the rest of the design Copy Geometry Features Allows copying of all types of geometry Surfaces, edges, curves, datums, quilts, copy/publish geometry Retains copied geometry name and layer settings Dependency on parent geometry can be toggled Can be “Externalized” External Copy Geometry Build relationships on external models independent of an assembly Useful for coordinate system assembly practices Simplified Representations, Display States & Shrinkwrap
26
Stage 6 Population of the Assembly Phase Automatic Component Constraints & Component Interfaces What tools are available for populating the assembly? Assembly Tools Drag & Drop Placement Component Interfaces Component Creation Within the context of the assembly Mirror Parts or Subassemblies
27
Highlights of Top-Down Design
Capture knowledge, or design intent, allowing you to concentrate on significant issues by making the software perform tedious, repetitive calculations. Enable the framework for interchangeability of components allowing for high-velocity product development by supporting rapid iterations of product variations. Create a concurrent design environment by spreading project design responsibility across many organizational levels.
28
Tip & Tricks
29
Miscellaneous Tips Separate Part Versus Assembly for Skeleton Features
Avoid constructing assembly-level skeleton features since the system requires that you perform all edits of these features in Assembly mode. The components can become an obstruction and degrade performance. Furthermore, you cannot easily reuse skeleton features at the assembly level in other subassemblies. By using a separate part file, you can edit the feature in Part Mode and reassemble it into many different assemblies. Geometry Features Place all static information in a skeleton as early as possible and place all dynamic information later in the design process cycle.
30
Miscellaneous Tips Datums for Skeleton Models Visualization
Consider renaming skeleton datums to “sk_” Visualization Use simplified reps and transparency prolifically to make viewing easier Use “display states” to highlight different items at different times Use surfaces to clarify meaning of centerlines & axes Conceptualization Don’t be afraid to use simple hand sketches before delving into complex situations … it’s NOT illegal
31
Simplified Representations: Performance Focused Tools
Tools to manage the type and amount of data in session Graphics Only Reps Graphical component display only No feature tree, measuring, modifications Show relations, material, parameters, etc. Geometry Only Reps Graphics Rep, plus… Reference and Measure capabilities Explode, Package, Routing Apps On Demand Automatically bring information into session as needed, then remove Graphics Rep Geometry Rep Master Rep Master Rep of ALL components
32
Shrinkwrap: Performance Metric
Original Transmission Surface Subset File size: 23MB Quality Level 6 File size: 147MB
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.