Download presentation
Presentation is loading. Please wait.
Published byRoderick O’Brien’ Modified over 9 years ago
1
Bryan Willimon Master’s Thesis Defense Interactive Perception for Cluttered Environments
2
Visually-guided Manipulation: Traditional Approach Manipulation-guided Sensing: “Interactive Perception*” SensePlanAct SensePlan *D. Katz and O. Brock. Manipulating articulated objects with interactive perception. ICRA 2008
3
Previous Related Work on Interactive Perception Segmentation through image differencing P. Fitzpatrick. First Contact: an active vision approach to segmentation. IROS 2003 Learning about prismatic and revolute joints on planar rigid objects D. Katz and O. Brock. Manipulating articulated objects with interactive perception. ICRA 2008
4
Goal of Interactive Perception Pile of StuffSeparate Object Classify Learn
5
Our Approach Extraction Graph-based Segmentation Stereo Matching Determining Grasp Point Classification Color Histogram Labeling Skeletonization Monitoring Object Interaction Labeling Revolute Joints using Motion
6
Extraction Process
7
Graph-based Segmentation* Separates the image into regions based on features of the pixels (e.g., color) Breaks apart the foreground and background Classify background as any pixel that shares the same color label as a border pixel. Subtracts background to leave only foreground *P. Felzenszwalb and D. Huttenlocher. Efficient graph-based image segmentation. IJCV 2004
8
Stereo Matching* Uses two different cameras from two slightly different projections to provide a sense of depth Depth information from foreground only is considered Foreground image from previous step is used as a mask to erase any background information Object on top of pile minimizes disturbance *P. Fua. Combining stereo and monocular information to compute dense depth maps that preserve depth discontinuities. IJCAI 1991
9
Determining Grasp Point Calculate the maximum chamfer* distance within the white area Use the outline of the white area as the starting point for the chamfering process Using chamfer distance instead of centroid handles concave objects *G. Borgefors. Distance transformations in digital images. CVGIP 1986
10
Classification
11
Color Histogram Labeling* Use color values (RGB) of the object to create a 3-D histogram Each histogram is normalized by number of pixels in object to create a probability distribution Each histogram is then compared to histograms of previous objects for a match using histogram intersection* White area is found by using same technique as in graph- based segmentation and used as a binary mask to locate object in image *M. Swain and D. Ballard. Color indexing. IJCV 1991
12
Skeletonization* Use binary mask from previous step to create a skeleton of the object Skeleton is a single-pixel wide outline of the area Prairie-fire analogy *G. Bertrand. A parallel thinning algorithm for medial surfaces. PRL 1995 Iteration 1
13
Skeletonization* Use binary mask from previous step to create a skeleton of the object Skeleton is a single-pixel wide outline of the area Prairie-fire analogy *G. Bertrand. A parallel thinning algorithm for medial surfaces. PRL 1995 Iteration 3
14
Skeletonization* Use binary mask from previous step to create a skeleton of the object Skeleton is a single-pixel wide outline of the area Prairie-fire analogy *G. Bertrand. A parallel thinning algorithm for medial surfaces. PRL 1995 Iteration 5
15
Skeletonization* Use binary mask from previous step to create a skeleton of the object Skeleton is a single-pixel wide outline of the area Prairie-fire analogy *G. Bertrand. A parallel thinning algorithm for medial surfaces. PRL 1995 Iteration 7
16
Skeletonization* Use binary mask from previous step to create a skeleton of the object Skeleton is a single-pixel wide outline of the area Prairie-fire analogy *G. Bertrand. A parallel thinning algorithm for medial surfaces. PRL 1995 Iteration 9
17
Skeletonization* Use binary mask from previous step to create a skeleton of the object Skeleton is a single-pixel wide outline of the area Prairie-fire analogy *G. Bertrand. A parallel thinning algorithm for medial surfaces. PRL 1995 Iteration 10
18
Skeletonization* Use binary mask from previous step to create a skeleton of the object Skeleton is a single-pixel wide outline of the area Prairie-fire analogy *G. Bertrand. A parallel thinning algorithm for medial surfaces. PRL 1995 Iteration 11
19
Skeletonization* Use binary mask from previous step to create a skeleton of the object Skeleton is a single-pixel wide outline of the area Prairie-fire analogy *G. Bertrand. A parallel thinning algorithm for medial surfaces. PRL 1995 Iteration 13
20
Skeletonization* Use binary mask from previous step to create a skeleton of the object Skeleton is a single-pixel wide outline of the area Prairie-fire analogy *G. Bertrand. A parallel thinning algorithm for medial surfaces. PRL 1995 Iteration 15
21
Skeletonization* Use binary mask from previous step to create a skeleton of the object Skeleton is a single-pixel wide outline of the area Prairie-fire analogy *G. Bertrand. A parallel thinning algorithm for medial surfaces. PRL 1995 Iteration 17
22
Skeletonization* Use binary mask from previous step to create a skeleton of the object Skeleton is a single-pixel wide outline of the area Prairie-fire analogy *G. Bertrand. A parallel thinning algorithm for medial surfaces. PRL 1995 Iteration 47
23
Monitoring Object Interaction Use KLT* feature points to track movement of the object as the robot interacts with it Only concerned with feature points on the object and disregard all other points Calculate distance between each feature point every f length frames (f length =5) *C. Tomasi and T. Kanade. Detection and tracking of point features. CMU 1991
24
Monitoring Object Interaction (cont.) Idea: Like features keep a constant intra-distance, features from different groups have variable intra- distance Features were separated into groups by measuring the intra-distance amount after f length frames If the intra-distance between two features changes by less than a threshold, then they are within the same group Otherwise, they are within different groups Separate groups relate to separate parts of an object
25
Labeling Revolute Joints using Motion For each feature group, create an ellipse that encapsulates all features Calculate major axis of ellipse using PCA* End points of major axis correspond to a revolute joint and the endpoint of the extremity *I. Jolliffe. Principal Component Analysis. Springer 1986
26
Labeling Revolute Joints using Motion (cont.) Using the skeleton, locate intersection points and end points Intersection points (Red) = Rigid or Non-rigid joints End points (Green) = Interaction points Interaction points are locations that the robot uses to “push” or “poke” the object
27
Labeling Revolute Joints using Motion (cont.) Map estimated revolute joint from major axis of ellipse to actual joint in skeleton In the case of groups with size 1, the revolute joint is labeled to be the closest intersection point After multiple interactions from the robot, a final skeleton is created with revolute joints labeled (red)
28
Experiments Items used for experiments 3 Logitech Quick-Cam Pro webcams (2 for stereo system and 1 for classifying) PUMA 500 robotic arm (or EZ gripper) 2 areas were used and located near each other for easy use of the robotic arm One was designated as extracted table and the other as classification table
29
Results Toys on the floor – PUMA 500 Recycling bin – EZ gripper Socks and shoes in a hamper – EZ gripper
30
Results Toys on the (cont.) floor Final Skeleton used for Classification
31
Results Toys on the (cont.) floor Final Skeleton used for Classification
32
Results Toys on the (cont.) floor Final Skeleton used for Classification
33
Results Toys on the (cont.) floor Final Skeleton used for Classification
34
Results Toys on the (cont.) floor Classification Experiment 1234 5678
35
Results Toys on the (cont.) floor Classification Experiment *Rows = Query image, Columns = Database image
36
Results Toys on the (cont.) floor Classification Experiment Without use of skeleton
37
Results Toys on the (cont.) floor Classification Experiment With use of skeleton
38
Results Recycling (cont.) bin
39
Without use of skeleton
40
Results Recycling (cont.) bin With use of skeleton
41
Results Socks and (cont.) Shoes
42
Only 1 image matched #5, skeleton could not be used
43
Comparison of Related Work Comparing objects of the same type to that of similar work* Pliers from our results compared to shears in their results* *D. Katz and O. Brock. Manipulating articulated objects with interactive perception. ICRA 2008 Our approachTheir approach
44
How is our work different? 1. Our approach handles rigid and non-rigid objects Most of the previous work only considers planar rigid objects 2. We gather more information with interaction like a skeleton of the object, color, and movable joints. Other works only look to segment the object or find revolute and prismatic joints 3. Our approach works with cluttered environments Other works only handle a single object instead of working with multiple items piled together
45
Conclusion This is a general approach that can be applied to various scenarios using manipulation-guided sensing The results demonstrated that our approach provided a way to classify rigid and non-rigid objects and label them for sorting and/or pairing purposes This approach builds on and exceeds previous work in the scope of “interactive perception” This approach also provides a way to extract items out of a cluttered area one at a time with minimal disturbance Applications for this project Service robots handling household chores Map-making robot learning about the environment while creating a map of the area
46
Future Work Create a 3-D environment instead of a 2-D environment Modify classification area to allow for interactions from more than 2 directions Improve the gripper of the robot for more robust grasping Enhance classification algorithm and learning strategy Use more characteristics to properly label a wider range of objects
47
Questions?
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.