Presentation is loading. Please wait.

Presentation is loading. Please wait.

Arabinogalactan proteins

Similar presentations


Presentation on theme: "Arabinogalactan proteins"— Presentation transcript:

1 Arabinogalactan proteins
Pbio691 - Plant Cell Wall 11/05/2010 Laura Cristea

2 AGPs Plant primary cell wall Cellulose Hemicellulose Proteins

3 AGPs Overview Lowest protein content among HRGPs (1-10%)
Highest sugar content among HRGPs (90-99%) Complex glycosylation modules Protein backbone O-glycosylated Ara, Gal, Rha, GlcUA, Fuc Soluble or GPI-anchored Associated with plasma membrane, cell wall Regulation, signaling, growth and development Cell-cell interaction, pathogen defense Substrate for pollen growth, wound-induced (gum arabic)

4 AGPs Classification based on structure Classical Hyp-rich AGPs (A)
Classical AGPs with Lys-rich domain (B) AG peptide (12 aa) (C) Nonclassical AGPs with Asn-rich domain (D) Proteins with two AGP and two fasciclin domain (E) Proteins with two AGP and one fasciclin domain (F) Proteins with one AGP and one fasciclin domain (G) Albersheim, P. et al. Plant Cell Walls (2010)

5 AGPs Gum arabic glycoprotein Ala-poor, His-rich Extensin motif
Intermediate between AGPs and extensins Repetitive consensus motif Ser-Hyp-Hyp-Hyp-Thr-Leu-Ser-Hyp-Ser-Hyp-Thr-Hyp-Thr-Hyp-Hyp-Leu-Gly-Pro-His Sugar composition resembles the AGPs with arabinose and galactose as major ones

6 AGPs Biosynthesis Hydrophobic C-terminal – GPI
Secretory pathway Hydrophobic C-terminal – GPI Ala, Thr, Ser, Pro, Hyp rich ER – protein backbone Prolyl hydroxylase – not all Pro Golgi – Hyp-O-glycosylation –not all Hyp Glycosyltransferases Hyp glycosylation hypothesis beta glucosyl Yariv reagent – identification problems Buchanan, Gruissem, Jones Biochemistry & Molecular Biology of Plants

7 AGPs Prolyl hydroxylase Post-translational
Type II integral membrane protein Affinity – > 4 Pro residues Atmosferic oxygen needed O of 4-OH from Hyp – oxygen Albersheim, P. et al. Plant Cell Walls (2010)

8 AGPs Hyp contiguity hypothesis
Contiguous Hyp residues are arabinosylated (extensins) Noncontiguous Hyp are not glycosylated or just have one arabinose Clustered Hyp residues are linked to a galactose backbone with arabinose and galactose as major components in the side chains; other types of sugar might be present Conclusion: the glycosylation pattern of the AGP protein backbone is determined by the amino acid sequence.

9 AGPs Enzymes for degradation

10 AGPs O-glycosylation in general
Wilson, Iain BH (2002) Curr. Opinion in Structural Biology 12,

11 Plant O-Hydroxyproline Arabinogalactans Are Composed of
Repeating Trigalactosyl Subunits with Short Bifurcated Side Chains Li Tan, Peter Varnai, Derek T.A. Lamport, Chunhua Yuan, Jianfeng Xu, Feng Qiu, Marcia J. Kieliszewski J. of Biol. Chem. Vol. 285, no. 32, (2010)

12 Subcloning for gene expression
Gene design (AP)51 IFNα2-(SP)20 Subcloning for gene expression Tobacco extensin signal sequence CaMV 35S Plant transformation vector pBI121 Agrobacterium LBA4404 transformation Tobacco suspension cells transformation Tobacco suspension cell culture Protein separation Protein biochemical analysis NMR structure determination

13 Gene design Gene design (AP)51 IFNα2-(SP)20
Tan, L. et al. (2003) Plant Physiology 132, IFNα2-(Ser-Hyp) Note: IFNα2 sequence not detailed Xu, J. et al. (2007) Biotechnology & Bioengineering

14 Hydrophobic Interaction Chromatography
Protein separation Protein biochemical analysis Tobacco cells media Hydrophobic Interaction Chromatography (HIC)

15 Cation & Size exclusion chromatography
Hyp-arabinogalactan (Ala-Hyp)51-EGFP Cation & Size exclusion chromatography INFα2-(Ser-Hyp)20 Isolation & purification NaOH hydrolysis (108°C, 18 h) Separation on size-exclusion chromatography (Superdex-Peptide column) Hyp analysis - colorimetric Monosaccharide analysis Total sugar content – colorimetric (anthrone method) Neutral sugar content – gas chromatography (alditol acetates method) Nuclear Magnetic Resonance (NMR) INF Hyp-polysaccharide 1 AHP-1 AHP-1 tube 23 Tan, L. et al. (2004) The Journal of Biological Chemistry 279:13,

16 NMR spectroscopy One-dimensional 1H Two-dimensional 1H homonuclear
COrrelation SpectroscopY (COSY) TOtal Correlation SpectroscopY (TOCSY) ROtating Frame NOE SpectroscopY (ROESY) Nuclear Overhausser Effect SpectroscopY (NOESY) Two-dimensional 13C, 1H Heteronuclear Single Quantum Coherence (HSQC) Heteronuclear Multiple Bond Coherence (HMBC) Two dimensional 13C, 1H heteronuclear HSQC-TOCSY Two dimensional 13C, 1H HSQC—NOESY NMRPipe NMRView Standard: 4,4-dimethyl-4-silapentane-1-sulfonic acid (DSS)

17 Chemical shifts of 1H & 13C Gane, A.M. et al. (1995) Carbohydrate Research 277, 67-85

18 1H NMR, HSQC, HSMB from a previous paper

19 A:B:C:D:E:F:G = 4:1:1:1:4:1:4
One dimensional 1H – AHP-1 A:B:C:D:E:F:G = 4:1:1:1:4:1:4 A – Ara D – Hyp H-4 B – Ara E – Gal C – Rha F – Gal G – Gal & GlcA Tan, L. et al. (2004) The Journal of Biological Chemistry 279:13,

20 HSQC & HMBC

21 INF Hyp-polysaccharide 1

22 Sugar ratio & configuration
Tan, L. et al. (2010) The Journal of Biological Chemistry 285:32,

23 INF Hyp-polysaccharide 1
Sugar ratio & configuration 1H NMR A:B:C:D:E:F:G = 6:2:2:1:5:1:4+2 A – Ara D – Hyp H-4 B – Ara E – Gal C – Rha F – Gal linked to Hyp G – Gal + GlcUA INF Hyp-polysaccharide 1 Tan, L. et al. (2010) The Journal of Biological Chemistry 285:32,

24 Hyp-Gal linkage TOCSY HSQC
Tan, L. et al. (2010) The Journal of Biological Chemistry 285:32,

25 Hyp-Gal linkage HMBC Tan, L. et al. (2010) The Journal of Biological Chemistry 285:32,

26 Gal configurations 1H NMR HMBC
Tan, L. et al. (2010) The Journal of Biological Chemistry 285:32,

27

28 Rha residues TOCSY HSQC
Tan, L. et al. (2010) The Journal of Biological Chemistry 285:32,

29 Rha – GlcUA GlcUA - Gal HMBC
Tan, L. et al. (2010) The Journal of Biological Chemistry 285:32,

30

31 1H NMR Ara linkages HMBC Tan, L. et al. (2010) The Journal of Biological Chemistry 285:32,

32 HSQC Ara linkages HMBC Tan, L. et al. (2010) The Journal of Biological Chemistry 285:32,

33

34 INF Hyp-polysaccharide 2

35 Gal:Ara:GlcUA:Rha – 10:5:4:1
Sugar composition 1H NMR Gal:Ara:GlcUA:Rha – 10:5:4:1 Tan, L. et al. (2010) The Journal of Biological Chemistry 285:32,

36 Gal linkage & backbone HMBC
Tan, L. et al. (2010) The Journal of Biological Chemistry 285:32,

37 Side chains 1H NMR HMBC Tan, L. et al. (2010) The Journal of Biological Chemistry 285:32,

38 Primary structures IFN-Hyp polysaccharide 1 IFN-Hyp polysaccharide 2
Tan, L. et al. (2010) The Journal of Biological Chemistry 285:32,

39 Conclusions Complete structure elucidation by NMR
INF Hyp-polysaccharide 1 has six-residue galactan chain with 2 beta 1,3 linked by a beta 1,6 linkage INF Hyp-polysaccharide has four side chains Repetitive trisaccharide with two six-residue bifurcated side chains Six-residue side chain – identical with gum arabic side chain (no ter 5-Ara) Glycosylation is not determined by the non-glycosylated sequence or type of peptide Incomplete glycosylation

40 Molecular Modeling

41


Download ppt "Arabinogalactan proteins"

Similar presentations


Ads by Google