Presentation is loading. Please wait.

Presentation is loading. Please wait.

SPIRAL2 - Weizmann-Soreq-Louvain March 20071 18 Ne GANIL Louvain la Neuve.

Similar presentations


Presentation on theme: "SPIRAL2 - Weizmann-Soreq-Louvain March 20071 18 Ne GANIL Louvain la Neuve."— Presentation transcript:

1 SPIRAL2 - Weizmann-Soreq-Louvain March 20071 18 Ne GANIL Louvain la Neuve

2 SPIRAL2 - Weizmann-Soreq-Louvain March 20072 Secondary neutrons + fission BUT Also light RIB ’ s

3 SPIRAL2 - Weizmann-Soreq-Louvain March 20073 Accelerator artist view 176 MHz 3.8 m 1.5 MeV/u M/q  2 1 st cryostat 6 SC HWR 176 MHz  0 =0.09 2 nd – 6 th cryostats 40 SC HWR 176 MHz  0 =0.15 40 MeV x 2 mA p / d RF SC linac

4 SPIRAL2 - Weizmann-Soreq-Louvain March 20074 ECR Ion Source, LEBT and RFQ in situ The SARAF accelerator at Soreq, Israel. Winter 2007

5 SPIRAL2 - Weizmann-Soreq-Louvain March 20075 Fusion Reactions in the Sun: The CNO cycle 14 O 17 F ( ,p) …..  Proposed at GANIL

6 SPIRAL2 - Weizmann-Soreq-Louvain March 20076 Mass accretion from a companion into a neutron star (black hole).  Role of 14 O, 15 O and 18 Ne in the physics of x-ray bursts 4 He( 15 O,  ) 19 NE M. Wiescher et al. Erice Conference, 2007 J.L. Fisker et al., arXiv:astro-ph/070241

7 SPIRAL2 - Weizmann-Soreq-Louvain March 20077 X-Ray Bursts and the “ rp ” process The rp process and x-ray bursts - site of nucleo- synthesis The rp process and x-ray bursts - site of nucleo- synthesis These movies simulate an x-ray burst and the rapid-proton capture (“rp”) process. The calculation begins at T9=T/10^9 K=40 with only neutrons and protons. As time progresses and the temperature drops below T9=10, nucleons assemble into 4He nuclei then into heavier mass nuclides. Once T9 falls below about 4, the QSE among the heavy nuclei begins to break down. Charged-particle reactions freeze out, and flow to higher mass number occurs via nuclear beta decay. This is the classical r- process phase.

8 SPIRAL2 - Weizmann-Soreq-Louvain March 20078 The Astrophysical Journal, 650 (2006) 332 J.L. Fisker et al. The Importance of 15 O(  ) 19 Ne to X-Ray Bursts and Superbursts Arxive-ph/0702412 Feb. 2007 J.L. Fisker et al. Experimental measurements of the 15 O(  ) 19 Ne reaction rate vs. observations of type I X-ray bursts Nuclear Physics A 718, (2003) 605 B. Davids et al. Alpha-decay branching ratios of near-threshold states in 19 Ne and the astrophysical rate of 15 O(α,γ) 19 Ne PRC 67 065809 (2003) K. E. Rehm et al. Branching ration     of the 4.033 MeV 3/2 + state in 19 Ne Nuclear Physics A 688 (2001)465c. S. Cherubini et al. The 15 O(  ) 19 Ne reaction using a 18 Ne radioactive beam Partial sample of representative papers

9 SPIRAL2 - Weizmann-Soreq-Louvain March 20079 A first experimental approach to the 15 O +  elastic scattering - Eur. Phys. J. A27, 183 (2006) F. Vanderbist, P. Leleux, C. Angulo, E. Casarejos, M. Couder, M. Loiselet, G. Ryckewaert, P. Descouvemont, M. Aliotta, T. Davinson, Z. Liu, and P.J. Woods Recent experiments have determined   (or put limits to   ) for levels in 19 Ne up to 5.092 MeV excitation energy. A conclusion is that a direct measurement of the 15 O( ,  ) 19 Ne reaction in the region of astrophysical interest is currently impossible: 15 O beams of intensity larger than 10 11 pps on target would be required indeed to measure the 15 O(a,  ) 19 Ne cross-section in inverse kinematics in the energy region surrounding the first state above threshold, at 4.033 MeV ….

10 SPIRAL2 - Weizmann-Soreq-Louvain March 200710 14 N(d,2n) 14 O cross section and yield 14 N(d,n) 15 O cross section and yield for a 2 mA deuteron beam for a 2 mA deuterons beam But, extraction of atomic oxygen … Long-learned lesson: “ orders-of-magnitude improvement in sensitivity of measurement – enhanced understanding and possibilities ”.

11 SPIRAL2 - Weizmann-Soreq-Louvain March 200711 Tentative results Lower yield, but, better extraction..

12 SPIRAL2 - Weizmann-Soreq-Louvain March 200712 The  beam ( from Mats Lindroos – CERN ) Production of an intense collimated neutrino (anti neutrino) beam directed at neutrino detectors via  decay of accelerated radioactive ions Decay Ring ISOL target & Ion source SPL Cyclotrons Storage ring and fast cycling synchrotron 6 He 6 Li e - 18 Ne 18 Fe + PS SPS To the French Alps

13 SPIRAL2 - Weizmann-Soreq-Louvain March 200713 EURISOL INTERNATIONAL ADVISORY PANEL : “…. no progress has been made with the study of alternative production schemes of 6 He and 18 Ne using low energy beams and strongly recommends that this study be completed …. The outcome of this study is an essential ingredient for the analysis whether it is technically feasible to decouple EURISOL and the beta-beams completely

14 SPIRAL2 - Weizmann-Soreq-Louvain March 200714 Two stage production scheme 1 cm 40 MeV d 5 mA 200 kW L=5 cm D=5 cm 5 cm R=5 cm 9 Be fast n Primary target Secondary target 7 Li(d,xn) 9 Be(n,  ) 6 H e 9 Be(n,2n) 8 Be Target: C, Be, Li..

15 SPIRAL2 - Weizmann-Soreq-Louvain March 200715 6 He production (n,  ) cross section Production yield of the order of 10 13 6 He per 1 mA d@40 MeV Remember also 11 B(n,  ) 8 Li

16 SPIRAL2 - Weizmann-Soreq-Louvain March 200716 8 Li energies of interest E( 8 Li [MeV]) 3 6

17 SPIRAL2 - Weizmann-Soreq-Louvain March 200717 R&D Steps Via neutron converter – 6 He, 8 Li,..  Simulations – Geant4, MCNP – PRODUCTION rate of ~10 13 /mA!!!  Converter design  Target design – Extraction (Be fibers, “ microballs..) Direct production – 14,15 O, 18 Ne,..  Design of targets (heat) for direct production (O and Ne); materials (gas?), …  Extraction. Nitrogen is “ bad ”. Perhaps C0 2 ? M. Loiselet, LLN 12 C( 3 He,n) 14 O and 12 C( 4 He,n) 15 O Experiment: Beam, Team, Detectors (RMS-like, Si ball, EXOGAM..) …

18 SPIRAL2 - Weizmann-Soreq-Louvain March 200718 Towards a full proposal – objectives and milestones.  2007-2009 Proposal to FP7 (Task 7.1). Towards establishing a true collaboration. Initial target design. R&D studies of both n-converter and direct production.  2009-2011 Target (s) manufacturing. Parameters for experimental setup.  2012- ……. SPIRAL-II

19 SPIRAL2 - Weizmann-Soreq-Louvain March 200719 SUMMARY  Presented ideas for light radio-nuclei production and use at SPIRAL2  Scientific Case  Calculations and simulations exist – but much more R&D needed  “ Road Map ” towards a full experiment  OPEN COLLABORATION – participation welcome!!

20 SPIRAL2 - Weizmann-Soreq-Louvain March 200720 g.s. ‘2000 Type II Supernovae 8 Li( ,n) 11 B

21 SPIRAL2 - Weizmann-Soreq-Louvain March 200721 MCNP 6 He yield simulation Li 1 cm 2 mA 80 kW L=5 cm D=5 cm 5 cm R=5 cm 9 Be fast n Primary target Secondary target 7 Li(d,xn) 9 Be(n,  ) 6 He 9 Be(n,2n) 8 Be Simulated by Keren Lavie Assuming: 1.a source target of solid Beryllium in place of liquid Li. 2.Secondary Be target at natural density.

22 SPIRAL2 - Weizmann-Soreq-Louvain March 200722 Typical X-ray bursts: 10 36 -10 38 erg/s duration 10 s – 100s recurrence: hours-days regular or irregular Frequent and very bright phenomenon ! (stars 10 33 -10 35 erg/s)

23 SPIRAL2 - Weizmann-Soreq-Louvain March 200723 Production of 14 O

24 SPIRAL2 - Weizmann-Soreq-Louvain March 200724  sm = 310 -19 [  /eV], but…..

25 SPIRAL2 - Weizmann-Soreq-Louvain March 200725 neutron flux in secondary target MCNP K. Lavie 100% natural density

26 SPIRAL2 - Weizmann-Soreq-Louvain March 200726 flux cross section overlap

27 SPIRAL2 - Weizmann-Soreq-Louvain March 200727 production efficiency as function of Be target slide MCNP K. Lavie

28 SPIRAL2 - Weizmann-Soreq-Louvain March 200728 Production of other isotope Analytical calculation

29 SPIRAL2 - Weizmann-Soreq-Louvain March 200729 Production of other isotope

30 SPIRAL2 - Weizmann-Soreq-Louvain March 200730  A new idea ….  There is a very noticeable lack of accelerators for STABLE BEAMS at HIGH CURRENT. There is now even a separate European network for such present and future facility.  Say, one installs at the SARAF a high-q ECR source and then one can obtain beams of 240 MeV 12 C, 320 MeV 16 O etc. at hundreds of  A  Build a high-efficiency- large solid angle Recoil Mass Separator or a gas-filled magnet for nuclear structure and astrophysics. To be explored … (!?)

31 SPIRAL2 - Weizmann-Soreq-Louvain March 200731

32 SPIRAL2 - Weizmann-Soreq-Louvain March 200732

33 SPIRAL2 - Weizmann-Soreq-Louvain March 200733 Primary target fast n spectrum IFMIF S.P.Simakov et al. 2002 =15 MeV

34 SPIRAL2 - Weizmann-Soreq-Louvain March 200734 Accelerator layout 176 MHz 3.8 m 1.5 MeV/u M/q  2 1 st cryostat 6 SC HWR 176 MHz  0 =0.09 2 nd – 6 th cryostats 40 SC HWR 176 MHz  0 =0.15 40 MeV x 2 mA p / d RF SC linac

35 SPIRAL2 - Weizmann-Soreq-Louvain March 200735

36 SPIRAL2 - Weizmann-Soreq-Louvain March 200736

37 SPIRAL2 - Weizmann-Soreq-Louvain March 200737 SiteRef.Production rate ( 6 He/s) Available for experiment ( 6 He/s) SARAF (2mA)This work2.4∙10 13 * 3∙10 11 Beta-beam[25]6.3∙10 12 8∙10 11 Ganil-SPIRAL I[26]9∙10 7 Dubna-DRIB[27]1.5∙10 5 Louvain-la-Neuve[28]5.3∙10 6 Table 1 – comparison of 6 He production yield for different laboratories Assume the transmission efficiency for 6 He extraction ionization and transport is ~ 1% [25].

38 SPIRAL2 - Weizmann-Soreq-Louvain March 200738  Model dependence of the neutrino-deuteron disintegration cross sections at low energies http://il.arxiv.org/abs/nucl-th/0702073v1

39 SPIRAL2 - Weizmann-Soreq-Louvain March 200739 EURISOL INTERNATIONAL ADVISORY PANEL- Recent Report: “… no progress has been made with the study of alternative production schemes of 6 He and 18 Ne using low energy beams and strongly recommends that this study be completed within the next year. The outcome of this study is an essential ingredient for the analysis whether it is technically feasible to decouple EURISOL and the beta-beams completely. ”

40 SPIRAL2 - Weizmann-Soreq-Louvain March 200740 Next step in simulation Optimization: By adding a Be reflector √ As function of Be target density, structure Including construction metals As function of L, D and R LD R

41 SPIRAL2 - Weizmann-Soreq-Louvain March 200741 And Now What??.....  6 He and the magnetic moment of the neutrino Interest Target NO Post-acceleration results  8 Li( ,n) 11 B and Type II Supernovae  14 O( ,p) 17 F and 15 O( ,  ) 19 Ne and x-ray bursts - nucleo-synthesis Interest Target Post-acceleration results

42 SPIRAL2 - Weizmann-Soreq-Louvain March 200742

43 SPIRAL2 - Weizmann-Soreq-Louvain March 200743 Present Status – SARAF Phase I – March ‘ 07  Building ready  Source and LEBT ready  RFQ installed and being conditioned  SC resonators installed in cryostat, individually tested, waiting for final test of entire module.  First beam at ~4-5 MeV – Summer ’ 07

44 SPIRAL2 - Weizmann-Soreq-Louvain March 200744 Yield Calculations: Sergei Vaintraub, HUJI 6 He, 8 Li and others also via a d+ 7 Be neutron converter; the 11 B(n,  ) 8 Li and 9 Be(n,  ) 6 He reactions 80

45 SPIRAL2 - Weizmann-Soreq-Louvain March 200745 Examples of Reactions with RNB’s for Astrophysics 8 B(p,  ) 9 C 8 B( ,p) 11 C 9 C( ,p) 12 N 11 C(p,  ) 12 N

46 SPIRAL2 - Weizmann-Soreq-Louvain March 2007 11 C(p,  ) 12 N, S(E) = E  (E) exp(2  ) Direct Capture is important at stellar energies except for the places of resonances, 2 +, E x =0.960 MeV and 2 - 1.191 E 0 =0.030,  E 0 =0.020 MeV for CNO E 0 =0.18,  E 0 =0.16 MeV for Novae


Download ppt "SPIRAL2 - Weizmann-Soreq-Louvain March 20071 18 Ne GANIL Louvain la Neuve."

Similar presentations


Ads by Google