Presentation is loading. Please wait.

Presentation is loading. Please wait.

G. Murante – INAF OATo P. Monaco – Univ. Ts M. Calabrese – SISSA Ts G. De Lucia - INAF OATs S. Borgani – Univ. Ts K. Dolag – Obs..Munchen Heidelberg, May.

Similar presentations


Presentation on theme: "G. Murante – INAF OATo P. Monaco – Univ. Ts M. Calabrese – SISSA Ts G. De Lucia - INAF OATs S. Borgani – Univ. Ts K. Dolag – Obs..Munchen Heidelberg, May."— Presentation transcript:

1 G. Murante – INAF OATo P. Monaco – Univ. Ts M. Calabrese – SISSA Ts G. De Lucia - INAF OATs S. Borgani – Univ. Ts K. Dolag – Obs..Munchen Heidelberg, May 15th, 20121 Disk Galaxy Formation in a cosmological(context) content

2 MUPPI: MUlti Phase Particle Integrator  Star formation & feedback algorithm  Implemented in GADGET-3  Integrates ISM equations for each particle at each SPH time step  Effective thermal feedback  Obtains SK relation without imposing it  Gives ISM characteristics Heidelberg, May 15th, 2012 Disk Galaxy Formation in a cosmological(context) content2 Murante, Monaco, Giovalli, Borgani, Diaferio, 2010, MNRAS, 405, 1491 (See Monaco, Murante, Borgani, Dolag, 2012, MNRAS, 421, 2485)

3 MOLECULAR GAS = = = MASS FLOWS MASS FLOWS STAR FORMATION RESTORATION COOLING EVAPORATION M H2 -> SF On hot phase! On cold phase! Heidelberg, May 15th, 20123 Disk Galaxy Formation in a cosmological(context) content

4 Ė hot = -Ė cool +Ė sn +Ė hydro Multi-Phase particle Δt, ΔS Ė hydro = ΔS/(γ-1)ρ (γ-1) Δt SPH new ΔS etc... Heidelberg, May 15th, 20124 Disk Galaxy Formation in a cosmological(context) content Energy exchanges

5 ENERGY FLOW(S..) Hot phase energy ENERGY RELEASED BY SNeENERGY LOSS DUE TO COOLING ENERGY CONTRIBUTION DUE TO HYDRODYNAMICS this is the ENTROPY variation due to SPH hydrodynamics PRESSURE-DRIVEN SF Phenomenological (Blitz & Rosolowsky 2006) P ext  P therm with P 0 = 35000 Heidelberg, May 15th, 20125 Disk Galaxy Formation in a cosmological(context) content

6 More characteristics Heidelberg, May 15th, 2012 Disk Galaxy Formation in a cosmological(context) content6 Thermal energy given to neighbouring particles in a directional way Chemical evolution (Tornatore et al 2007) Primordial AND metal dependent cooling Stocastic kinetic winds: a fraction of particles continously receive also kinetic energy from neighbouring particles. They decouple from the gas. Wind speed depends on local SF. In cosmological simulations, velocities up to 1000 km/s

7 Dynamical SK relation Heidelberg, May 15th, 20127 Disk Galaxy Formation in a cosmological(context) content Monaco, Murante, Borgani, Dolag, 2012, MNRAS, 421, 2485

8 Cosmological disk galaxy simulations Heidelberg, May 15th, 2012 Disk Galaxy Formation in a cosmological(context) content8 (Stoehr+, 2002, MNRAS, 355, 84) (See The Aquila comparison project, Scannapieco+, 2012, MNRAS, in press)

9 Our best disk galaxy Heidelberg, May 15th, 2012 Disk Galaxy Formation in a cosmological(context) content9

10 How does the gas accrete? Heidelberg, May 15th, 2012 Disk Galaxy Formation in a cosmological(context) content10 use simulations without chemical evolution/metal cooling identify stars/gas particles at z=0 within R 200, R gal =0.1 R 200 follow back particles and recorded their maximum T also construct SUBFIND merger trees of haloes use three temperature ranges: 1.0 < Tmax < 250,000 K (cold); 2.250,000 K < Tmax < 10 6 K (warm) 3.Tmax > 10 6 K see to which accretion channel gas particles belong, if they ever were into clumps, both for particles within R 200 and R gal. We: Murante, Calabrese, De Lucia, Monaco Borgani, Dolag, 2012, ApJL, 749, 34

11 Heidelberg, May 15th, 2012 Disk Galaxy Formation in a cosmological(context) content11

12 Accretion channels Heidelberg, May 15th, 201212 Disk Galaxy Formation in a cosmological(context) content Warm gas GADGET

13 GA vs AQ Heidelberg, May 15th, 201213 Disk Galaxy Formation in a cosmological(context) content GalaxyHalo

14 Multiphase properties of gas in channels Heidelberg, May 15th, 201214 Disk Galaxy Formation in a cosmological(context) content Aq-C-5

15 Resolution Heidelberg, May 15th, 201215 Disk Galaxy Formation in a cosmological(context) content (results for accretion on galaxy)

16 Metal cooling Heidelberg, May 15th, 201216 Disk Galaxy Formation in a cosmological(context) content (results for GA1)

17 Clumpiness Heidelberg, May 15th, 201217 Disk Galaxy Formation in a cosmological(context) content (results for GA2) Cold gas is clumpy! Our gas clumps have DM… (10 7 Msol min)

18 Conclusions Heidelberg, May 15th, 201218 Disk Galaxy Formation in a cosmological(context) content MUPPI can produce reasonable disk galaxies Accretion on halo is mainly cold With an efficient thermal feedback scheme, a new gas accretion channel on galaxy arises: warm accretion Warm accretion is fuelled by gas heated by Sne feedback Cold accretion on galaxies is at least 50% clumpy Our result does not depend upon resolution, our chosen halo, chemical evolution/metal cooling: only on the efficiency of thermal feedback MUPPI can produce reasonable disk galaxies Accretion on halo is mainly cold With an efficient thermal feedback scheme, a new gas accretion channel on galaxy arises: warm accretion Warm accretion is fuelled by gas heated by Sne feedback Cold accretion on galaxies is at least 50% clumpy Our result does not depend upon resolution, our chosen halo, chemical evolution/metal cooling: only on the efficiency of thermal feedback


Download ppt "G. Murante – INAF OATo P. Monaco – Univ. Ts M. Calabrese – SISSA Ts G. De Lucia - INAF OATs S. Borgani – Univ. Ts K. Dolag – Obs..Munchen Heidelberg, May."

Similar presentations


Ads by Google