Presentation is loading. Please wait.

Presentation is loading. Please wait.

Geometry Images Steven Gortler Harvard University Steven Gortler Harvard University Xianfeng Gu Harvard University Xianfeng Gu Harvard University Hugues.

Similar presentations


Presentation on theme: "Geometry Images Steven Gortler Harvard University Steven Gortler Harvard University Xianfeng Gu Harvard University Xianfeng Gu Harvard University Hugues."— Presentation transcript:

1 Geometry Images Steven Gortler Harvard University Steven Gortler Harvard University Xianfeng Gu Harvard University Xianfeng Gu Harvard University Hugues Hoppe Microsoft Research Hugues Hoppe Microsoft Research

2 Irregular meshes Vertex 1 x 1 y 1 z 1 Vertex 2 x 2 y 2 z 2 … Face 2 1 3 Face 4 2 3 …

3 Texture mapping Vertex 1 x 1 y 1 z 1 Vertex 2 x 2 y 2 z 2 … s1 t1s1 t1s2 t2s2 t2s1 t1s1 t1s2 t2s2 t2 normal map s t Face 2 1 3 Face 4 2 3 …

4 Complicated rendering process Vertex 1 x 1 y 1 z 1 Vertex 2 x 2 y 2 z 2 … random access! s1 t1s1 t1s2 t2s2 t2s1 t1s1 t1s2 t2s2 t2 Face 2 1 3 Face 4 2 3 … ~40M Δ/sec

5 Semi-regular representations irregular vertex indices only semi-regular [Eck et al 1995] [Lee et al 1998] [Khodakovsky 2000] [Guskov et al 2000] …

6 Geometry Image geometry image 257 x 257; 12 bits/channel 3D geometry completely regular sampling

7 Basic idea demo cut parametrize

8 Basic idea cut sample

9 cut [r,g,b] = [x,y,z] render store

10 How to cut ? sphere in 3D 2D surface disk

11 How to cut ? l Genus-0 surface  any tree of edges sphere in 3D 2D surface disk

12 How to cut ? l Genus-g surface  2g generator loops minimum torus (genus 1)

13 Surface cutting algorithm (1) Find topologically-sufficient cut: 2g loops [Dey and Schipper 1995] [Erickson and Har-Peled 2002] (2) Allow better parametrization: additional cut paths [Sheffer 2002] (1) Find topologically-sufficient cut: 2g loops [Dey and Schipper 1995] [Erickson and Har-Peled 2002] (2) Allow better parametrization: additional cut paths [Sheffer 2002]

14 Step 1: Find topologically-sufficient cut (a) retract 2-simplices (b) retract 1-simplices

15 Results of Step 1 genus 6 genus 0 genus 3

16 Step 2: Augment cut l Make the cut pass through “extrema” (note: not local phenomena). l Approach: parametrize and look for “bad” areas. l Make the cut pass through “extrema” (note: not local phenomena). l Approach: parametrize and look for “bad” areas.

17 Step 2: Augment cut …iterate while parametrization improves

18 Results of Steps 1 & 2 genus 1 genus 0

19 Parametrize boundary Constraints: n cut-path mates identical length n endpoints at grid points Constraints: n cut-path mates identical length n endpoints at grid points a a’ a a’  no cracks

20 Parametrize interior –optimizes point-sampled approx. [Sander et al 2002] n Geometric-stretch metric –minimizes undersampling [Sander et al 2001] n Geometric-stretch metric –minimizes undersampling [Sander et al 2001]

21 Previous metrics (Floater, harmonic, uniform, …) Stretch parametrization

22 SampleSample geometry image

23 RenderingRendering (65x65 geometry image)

24 rendering geometry image 257 2 x 12b/ch normal-map image 512 2 x 8b/ch Rendering with attributes

25 Advantages for hardware rendering l Regular sampling  no vertex indices. l Unified parametrization  no texture coordinates.  Raster-scan traversal of source data: geometry & attribute samples in lockstep. Summary: compact, regular, no indirection Summary: compact, regular, no indirection l Regular sampling  no vertex indices. l Unified parametrization  no texture coordinates.  Raster-scan traversal of source data: geometry & attribute samples in lockstep. Summary: compact, regular, no indirection Summary: compact, regular, no indirection

26 normal map 512x512; 8b/ch Normal-Mapped Demo geometry image 129x129; 12b/ch demo

27 color map 512x512; 8b/ch Pre-shaded Demo geometry image 129x129; 12b/ch

28 ResultsResults 257x257 normal-map 512x512

29 ResultsResults 257x257 color image 512x512

30 Mip-mappingMip-mapping 257x257129x12965x65 boundary constraints set for size 65x65

31 Hierarchical culling view-frustum culling backface culling geometry image normal-map image

32 CompressionCompression  1.5 KB + topological sideband (12 B) fused cut 295 KB Image wavelet-coder

33 Compression results 1.5 KB 3 KB 12 KB 49 KB 295 KB 

34 Rate distortion

35 Some artifacts aliasing anisotropic sampling

36 SummarySummary l Simple rendering: compact, no indirection, raster-scan stream. l Mipmapped geometry l Hierarchical culling l Compressible l Simple rendering: compact, no indirection, raster-scan stream. l Mipmapped geometry l Hierarchical culling l Compressible

37 Future work l Better cutting algorithms l Feature-sensitive remeshing l Tangent-frame compression l Bilinear and bicubic rendering l Build hardware l Better cutting algorithms l Feature-sensitive remeshing l Tangent-frame compression l Bilinear and bicubic rendering l Build hardware

38


Download ppt "Geometry Images Steven Gortler Harvard University Steven Gortler Harvard University Xianfeng Gu Harvard University Xianfeng Gu Harvard University Hugues."

Similar presentations


Ads by Google