Presentation is loading. Please wait.

Presentation is loading. Please wait.

200 300 400 500 100 200 300 400 500 100 200 300 400 500 100 200 300 400 500 100 200 300 400 500 100 SimplifyingRandomWord ProblemsSolvingProperties.

Similar presentations


Presentation on theme: "200 300 400 500 100 200 300 400 500 100 200 300 400 500 100 200 300 400 500 100 200 300 400 500 100 SimplifyingRandomWord ProblemsSolvingProperties."— Presentation transcript:

1 200 300 400 500 100 200 300 400 500 100 200 300 400 500 100 200 300 400 500 100 200 300 400 500 100 SimplifyingRandomWord ProblemsSolvingProperties

2 Simplify then classify:

3 Quintic Polynomial of 4 terms

4 Simplify then classify:

5 Quartic Trinomial

6 Simplify then classify:

7 6 th degree polynomial of 5 terms

8 Divide then classify:

9 Quadratic Trinomial

10 Simplify then classify:

11 7 th degree polynomial of 5 terms

12 State the end behavior and number of turns of the function below.

13 End Behavior:  Number of Turns: 2

14 State the y- intercept and x- intercepts (including multiplicity) of the function

15 Y-intercept: (0.-4) X-intercept(s): (-2,0) Multiplicity of 3 (1,0) Multiplicity of 1

16 State the relative maxima, relative minima and range of the function

17 Relative Maxima: (-0.75, 9.5) Relative Minima: (2,0) Range: (-∞, ∞)

18 State the x- intercepts, relative maxima and relative minima

19 X-intercepts: (-3,0) (-2,0) (-1,0) (1,0) and (2,0) Relative Maxima: (-2.5,3) and (0,6) Relative Minima: (-1.5, -1.5) and (1.5,-5)

20 6 yd State the intervals of rising and falling

21 Interval of Rising: (-1.2, -0.5) U (0.5, 1.2) Interval of Falling: (-∞, -1.2) U (-0.5, 0.5) U (1.2, ∞)

22 Solve:

23 x = 0, x = -6 and x = 3

24 Solve:

25

26 . Solve:

27

28 Solve:

29

30 DAILY DOUBLE!!

31 Solve:

32

33

34 3 bridges

35

36 Cubic because it has a greater R 2 value.

37

38 There will be about 5,219 bacteria after 10 days.

39 A container has a length that is three times the width. The height of the box is 2 cm less than the length. Find the width of the box when the volume is 70 cm 3

40 2.2 cm

41 x x x x x xx x w l A piece of cardboard is cut into a box. The width of the original piece of cardboard is 10 inches and the length is 12 inches. Find the maximum volume of the box.

42 The maximum volume is 96.77 in 3

43

44 4 Turns and 5 Solutions

45

46 (-.59, -1.8)

47 Determine a possible equation of a polynomial that has an x-intercept at 2 with a multiplicity of 2 and an x- intercept and -3 with a multiplicity of 1

48

49

50

51

52


Download ppt "200 300 400 500 100 200 300 400 500 100 200 300 400 500 100 200 300 400 500 100 200 300 400 500 100 SimplifyingRandomWord ProblemsSolvingProperties."

Similar presentations


Ads by Google