Download presentation
Presentation is loading. Please wait.
Published byVirgil Dickerson Modified over 9 years ago
1
1. 刑其毅主编 基础有机化学 2. 曾昭琼主编 有机化学实验 3. 宁永成主编 有机化合物结构鉴定与有机波 谱学 4. 谢如刚主编 现代有机合成化学 5. 吴毓林主编 现代有机合成化学 阅读书目
2
Asymmetric Organic Synthesis Quan-Zhong Liu Open Laboratory of Asymmetric Synthesis, China West Normal University
3
1. 有机不对称合成 : 从理论到实践 1). 手性是自然界的基本属性 手性 : chirality 2). 手性药物 手性药物的销售情况 年份 199920002001 备注 销售额 96312301472 手性药物 52%
4
2. 手性的命名及相关术语 1). Fisher 规则 2). Cahan-Ingold-Prelog 规则
5
2). 相关术语 D- or L- d- or l- 立体异构体、对映(异构)体、非对映(异构)体 对映(异构)体过量、对映选择性 对映选择性:一个化学反映中产生的某一个对映体多于其相应的异构体的程度 光学活性、光学异构体和光学纯度 外消旋、内消旋和外消旋化 racemization Re, Si
6
顺式 / 反式( syn/anti) 、苏式 / 赤式 (threo/erythro form) 苏式赤式
7
3. 对映体组成的测定 比旋光度的测定 [a] 测定的旋光度 L 样品池的光路长度 dm C 浓度 g/mL 光学纯度或 ee 值 =100% * [ ] 测定 /[ ] 绝对 核磁共振
8
手性位移试剂 HPLC 绝对构型的测定
9
4. Asymmetric Organic Synthesis Chiral Resolution: Kinetic Resolution:
10
Dynamic Kinetic Resolution: Chiral induction:
11
Catalytic Asymmetric Synthesis:
13
Asymmetric Alkylation
14
1. Asymmetric Alkylation
15
1.1 Asymmetric Alkylation of tert-Butyl Glycinate Schiff Base 1) Cinchona derived phase transferred catalysts
17
金鸡纳生物碱的结构 : 反应机理 : 2) BINOL derived quternary ammonium catalyst
18
合成方法 :
19
参考文献 : J. Am. Chem. Soc. 1989, 111, 2323-2355. J. Am. Chem. Soc. 1997, 119, 12414-12415. Org. Process Res. Dev., 2008, 12, 679–697 J. Am. Chem. Soc., 2005, 127,5073–5083
20
1.2 Asymmetric Alkylation of enolate
24
2. Coupling Reactions The Stille reaction (or Stille Coupling) is a chemical reaction coupling an organotin compound with an sp 2 -hybridized organic halide catalyzed by palladium. The reaction is widely used in organic synthesis. X is typically a halide, such as Cl, Br and I. Additionally, X can be a pseudohalide such as a triflate, CF 3 SO 3 - The Stille reaction was discovered in 1977 by John Kenneth Stille and David Milstein, a post-doctorate in his laboratory. Stille reactions were used in 50% of all cross-coupling reactions published in 1992. The reaction continues to be exploited industrially, especially for pharmaceuticals. 2.1 Stille reaction
25
2.1.1 Mechanism Reaction condition: inert atmosphere, dehydrated and degassed solvent, trimethylstannyls are more reactive than tributylstannyl but more poisonous
26
Rate of ligand transfer (transmetalation) from tin: alkynyl > alkenyl > aryl > allyl = benzyl > α-alkoxyalkyl > alkyl The low reactivity of alkyl stannanes is a serious drawback but can be remedied by the use of strongly polar solvents such as, DMF or dioxane.
30
2.2.2 Application
32
2. 2 Suzuki Coupling Reactions Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457-2483. Suzuki, A. J. Organometallic Chem. 1999, 576, 147–168. The Suzuki reaction is the organic reaction of an aryl- or vinyl-boronic acid with an aryl- or vinyl-halide catalyzed by a palladium(0) complex. It is widely used to synthesize poly-olefins, styrenes, and substituted biphenyls, and has been extended to incorporate alkyl bromides
33
The scheme above shows the first published Suzuki Coupling, which is the palladium-catalysed cross coupling between organoboronic acid and halides. Recent catalyst and methods developments have broadened the possible applications enormously, so that the scope of the reaction partners is not restricted to aryls, but includes alkyls, alkenyls and alkynyls. Potassium trifluoroborates and organoboranes or boronate esters may be used in place of boronic acids. Some pseudohalides (for example triflates) may also be used as coupling partners. 2. 2.1 Mechanism
34
2. 2.2 Substrate scope
36
2. 2.3 Organoboranes
37
2. 2.3 Application
39
2. 3 Heck Reaction The Heck reaction (also called the Mizoroki-Heck reaction) is the chemical reaction of an unsaturated halide (or triflate) with an alkene and a strong base and palladium catalyst to form a substituted alkene. It is named after the American chemist Richard F. Heck. The reaction is performed in the presence of an organopalladium catalyst. The halide or triflate is an aryl, benzyl, or vinyl compound and the alkene contains at least one proton and is often electron-deficient such as acrylate ester or an acrylonitrile.The catalyst can be tetrakis(triphenylphosphine)palladium(0), palladium chloride or palladium(II) acetate. The ligand is triphenylphosphine or BINAP. The base is triethylamine, potassium carbonate or sodium acetate
40
2. 3.1 Mechanism
42
2. 3.2 Application
43
2. 4 Kumada reaction 2. 5 Sonogashira reaction
45
3 Aldol reaction
46
3.1 Z-enolates and E-enolates
48
3.2 Aldol reaction of Z-enolates
52
3.3 Removal of Oxazolidinones
57
Transamination
58
3.4 Diastereoselective Anti-Aldol Reactions of β-Ketoimides The C2 stereocenter is the dominant control element in these aldol reactions; "matched" vs. "mismatched" effects of the remote auxiliary are negligible.
62
3. 5 Catalytic asymmetric aldol reaction
73
3.6 Organocatalytic direct aldol reaction Angew. Chem. Int. Ed. 1971, 10, 496-497. Amino acids and anologies
75
1.J. Am. Chem. Soc. 2000, 122, 2395 2.J. Am. Chem. Soc. 2001, 123, 5260
77
J. Am. Chem. Soc. 2005, 127, 9285 Tetrahedron 2006, 62, 346. Org. Lett. 2005, 7, 4543.
78
Chiral diamines Babars C. F., Angew. Chem. Int. Ed. 2004, 43, 2420 Babars C. F., J. Am. Chem. Soc. 2006, 128, 734 12
79
Yamamoto, H.; Tetrahedron 2002, 58, 8167. Chen, J. J. Am. Chem. Soc. 2007, 129, 3074
80
Chen, J. Org. Lett. 2008, 10, 653.
81
Liu, Q. Org. Biomol. Chem. 2007, 5, 2913 Liu, Q. Tetrahedron Lett. 2008, 49, 7434
83
4. Asymmetric transformations catalyzed by chiral amines 4.1 Mannich Reactions Lu, Y. Org. Biomol. Chem. 2007, 5, 1018
84
Lu, Y. Chem. Commun. 2007, 4143
85
Babars III, C. F. J. Am. Chem. Soc. 2007, 129, 288 Cordova, A. Tetrahedron Asymmetry, 2007, 18, 1033
86
Babars III, C. F. Adv. Synth. Catal. 2008, 350, 791. Tsogoeva, S. B. Angew. Chem. Int. Ed. 2008, 47, 6624
87
4.2 Michael reactions Alexakis, A. Chem. Commun. 2007, 3123
88
Connon, S. J. Org. Lett. 2007, 9, 599. Cordova, A. Adv. Synth. Catal. 2006, 348, 418.
89
Tsogoeva, S. B. Chem. Commun. 2006, 145
90
Jacobsen, E. N. J. Am. Chem. Soc. 2006, 128, 7170
91
Feng, X. Adv. Synth. Catal. 2008, 350, 2001 Ma, J.-A. Org. Lett. 2007, 9, 923
92
Chen, Y.-C. Synlett. 2008, 49, 3881 Feng, X. Adv. Synth. Catal. 2007, 349, 2156
93
Lu, Y. Chem. Commun. 2008, 6315 4.3 Amination Chen, Y.-C. Org. Lett. 2007, 9, 3671
94
4. 4 Primary amine-induced iminium activation Chen, Y.-C. Org. Biomol. Chem. 2007, 5, 816 Melchiorre, P. Org. Lett. 2007, 9, 1403
95
Chin, J. Org. Lett. 2006, 8, 5239 Chen, Y.-C. Org. Lett. 2007, 9, 413
96
Chen, Y.-C. Angew. Chem. Int. Ed. 2007, 46, 389 Deng, J. Org. Biomol. Chem. 2008, 6, 349
97
Liang, X. Chem. Commun. 2008, 3302 Melchiorre, P. Adv. Synth. Catal. 2008, 350, 3302
98
Deng, L. Angew. Chem. Int. Ed. 2008, 47, 7710 Melchiorre, P. Eur. J. Org. Chem. 2007, 5492
99
Ishihara, K. Adv. Synth. Catal. 2006, 348, 2457
100
Ishihara, K. Org. Lett. 2006, 8, 2229 Deng, L. J. Am. Chem. Soc. 2008, 130, 2422
101
MacMillan, D. W. C. J. Am. Chem. Soc. 2000, 122, 9874 List, B. J. Angew. Chem. Int. Ed. 2005, 44, 108, MacMillan, D. W. C. Acc. Chem. Rev. 2007, 40, 1327
102
List, B. J. J. Am. Chem. Soc. 2008, 130, 6070
103
Deng, L. J. Am. Chem. Soc. 2008, 130, 8134 Zhong, G. Org. Lett. 2008, 10, 2437
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.