Download presentation
Presentation is loading. Please wait.
Published bySherilyn Heath Modified over 9 years ago
1
PLASMA INPUT AND METABOLITE FRACTION MODELS http://pet.utu.fi/staff/vesoik/reports/tpcmod0000.html TPCMOD0009 Models for plasma metabolite correction TPCMOD0010 Modelling input function
2
PLASMA METABOLITES http://pet.utu.fi/staff/vesoik/analysis/doc/metab_corr.html
3
MODELLING PLASMA METABOLITES: WHY? Removes ”noise” in the measured parent tracer fraction curve Interpolation of the fraction curve Extrapolation of the fraction curve Population based average metabolite correction?
4
MODELLING PLASMA METABOLITES: HOW? Linear interpolation (no modelling) Mathematical function fitting Kinetic models http://pet.utu.fi/staff/vesoik/reports/tpcmod0009.pdf
5
MATHEMATICAL FUNCTIONS Exponential functions Hill-type function Watabe’s empirical equation
6
Hill-type functions http://pet.utu.fi/staff/vesoik/programs/doc/fit_hill.html
7
KINETIC MODELS FOR PLASMA METABOLITES Huang et al. 1991, Reith et al. 1990, Gjedde et al. 1991 Carson et al. 1997 Models for [ 15 O]O 2 : Huang et al. 1991, Iida et al. 1993 http://pet.utu.fi/staff/vesoik/reports/tpcmod0009.pdf
8
Huang’s plasma metabolite model http://pet.utu.fi/staff/vesoik/reports/tpcmod0009_app_a.pdf
9
Extended Carson’s plasma metabolite model http://pet.utu.fi/staff/vesoik/reports/tpcmod0009_app_b.pdf
10
New plasma metabolite model http://pet.utu.fi/staff/vesoik/reports/tpcmod0009_app_c.pdf
11
KINETIC PLASMA METABOLITE MODELS MAY FAIL IF: Noise in measured plasma or blood curve Missing plasma samples during tracer infusion
12
MODELLING PLASMA CURVE: WHY? Removes noise Interpolation Extrapolation Reduces bias caused by missing samples Population based curve applying few late-time venous samples
13
MODELLING PLASMA CURVE: HOW? Linear interpolation (no modelling) Spline fitting Mathematical function fitting Kinetic models http://pet.utu.fi/staff/vesoik/reports/tpcmod0010.pdf
14
MATHEMATICAL FUNCTIONS Sum of exponential functions Thompson and Golish bolus input function Gamma variate function Feng et al. (based on compartmental models) http://pet.utu.fi/staff/vesoik/reports/tpcmod0010.pdf http://pet.utu.fi/staff/vesoik/programs/doc/fit_feng.html
15
Examples of Thompson’s function with asymptotic recirculation term by Golish et al.
16
KINETIC MODELS FOR PLASMA CURVE Feng et al. 1993 Graham 1997
17
GRAHAM’S MODEL http://pet.utu.fi/staff/vesoik/reports/tpcmod0010_app_a.pdf
18
GRAHAM’S MODEL FOR PLASMA CURVE AND A METABOLITE http://pet.utu.fi/staff/vesoik/reports/tpcmod0010_app_b.pdf
19
Example fit
20
Example fit (cont.)
21
PROBLEMS Model contains up to 18 parameters Difficult to weight metabolite fractions in relation to plasma Peak is not fitted well: may need a constraint Fast metabolism: are the first measured fractions correct?
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.