Presentation is loading. Please wait.

Presentation is loading. Please wait.

On Empirical Mode Decomposition and its Algorithms

Similar presentations


Presentation on theme: "On Empirical Mode Decomposition and its Algorithms"— Presentation transcript:

1 On Empirical Mode Decomposition and its Algorithms
G. Rilling, P. Flandrin (Cnrs - Éns Lyon, France) P. Gonçalvès (Inria Rhône-Alpes, France) IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing, Grado (I), June 9-11, 2003

2 outline Empirical Mode Decomposition (EMD) basics examples
algorithmic issues elements of performance evaluation perspectives

3 basic idea « multimodal signal = fast oscillations on the top of slower oscillations » Empirical Mode Decomposition (Huang) identify locally the fastest oscillation substract to the signal and iterate on the residual data-driven method, locally adaptive and multiscale

4 Huang’s algorithm compute lower and upper envelopes from interpolations between extrema substract mean envelope from signal iterate until mean envelope = 0 and #{extrema} = #{zero-crossings} ± 1 substract the obtained Intrinsic Mode Function (IMF) from signal and iterate on residual

5 how EMD works

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82 EMD and AM-FM signals quasi-monochromatic harmonic oscillations
self-adaptive time-variant filtering example : 2 sinus FM + 1 Gaussian wave packet

83 EMD

84 time-frequency signature

85 time-frequency signature

86 time-frequency signature

87 time-frequency signature

88 nonlinear oscillations
IMF ≠ Fourier mode and, in nonlinear situations, 1 IMF = many Fourier modes example : 1 HF triangle + 1 MF tone + 1 LF triangle

89 EMD

90 issues algorithm ? performance ?
intuitive but ad-hoc procedure, not unique several user-controlled tunings performance ? difficult evaluation since no analytical definition numerical simulations

91 algorithmic issues interpolation stopping criteria
type ? cubic splines border effects ? mirror symmetry stopping criteria mean zero ? 2 thresholds variation 1 : « local EMD » computational burden about log2 N IMF ’s for N data points variation 2 : « on-line EMD »

92 performance evaluation
extensive numerical simulations deterministic framework importance of sampling ability to resolve multicomponent signals a complement to stochastic studies noisy signals + fractional Gaussian noise PF et al., IEEE Sig. Proc. Lett., to appear

93 EMD of fractional Gaussian noise

94 1. EMD and (tone) sampling

95 case 1 — oversampling

96 equal height maxima

97 constant upper envelope

98 equal height minima

99 constant lower envelope

100 zero mean : tone = IMF

101 case 2 — moderate sampling

102 fluctuating maxima

103 modulated upper envelope

104 fluctuating minima

105 modulated lower envelope

106 non zero mean : tone ≠ IMF

107 experiment 1 256 points tone, with 0 ≤ f ≤1/2
error = normalized L2 distance comparing tone vs. IMF #1 minimum when 1/f even multiple of the sampling period

108 experiment 2 256 points tones, with 0 ≤ f1 ≤1/2 and f2 ≤ f1
error = weighted normalized L2 distance comparing tone #1 vs. IMF #1, and tone #2 vs. max{IMF #k, k ≥ 2}

109 experiment 3 intertwining of amplitude ratio, sampling rate and frequency spacing dominant effect when f1 ≤ 1/4 : constant-Q (wavelet-like) « confusion band »

110 concluding remarks EMD is an appealing data-driven and multiscale technique spontaneous dyadic filterbank structure in « stationary » situations, stochastic (fGn) or not (tones) EMD defined as output of an algorithm: theoretical framework beyond numerical simulations?

111 (p)reprints, Matlab codes and demos www.ens-lyon.fr/~flandrin/emd.html


Download ppt "On Empirical Mode Decomposition and its Algorithms"

Similar presentations


Ads by Google