Download presentation
Presentation is loading. Please wait.
Published byJemimah Fisher Modified over 9 years ago
1
Justin Chow Jacob Huang Daniel Soledad ME 4447/6405 Student Lecture
2
History Properties Types BJT JFET MOSFET Applications Overview Daniel Soledad
3
Transistor History “Transistor” is combination of “transconductance” and “variable resistor” How Transistors Are Made ▪ Vacuum tubes ▪ Inefficient, fragile, bulky, generated a lot of heat ▪ First Transistors ▪ Semiconductors – Bell Labs 1947 Introduction
4
Packaging Surface Mount or Through Hole Usually 3 or 4 terminal device ▪ Can be packaged into ICs General Applications Amplification/Regulation Switches Introduction
5
Current Controlled i.e: BJT The output current is proportional to input current Voltage Controlled i.e.: JFET, MOSFET The output current is proportional to input voltage
6
Bipolar Junction Transistor 3 semiconductor layers sandwiched together Comes in two flavors NPN BJT PNP BJT BJT Transistor Justin Chow
7
Diodes Forward BiasedReverse Biased current flowsno current flows when V PN >.6-.7V BJT Transistor
8
BJT Basics (NPN) BE Forward Biased BC Reversed Biased β=I B / I c ≈ 100 I E = I B + I C BJT Transistor emitter base collector Electron Flow
9
Things to remember PNP, biasing opposite Conventional current vs electron flow A small input current controls a much larger output current. BJT Transistor
10
Operating Regions BJT Transistor Operating RegionParameters Cut Off V BE <0.7 V I B = I C = 0 Linear V BE >0.7 V I C = β*I B Saturated I B > 0, I C > 0 V BE >0.7 V, V CE 0.2 V
11
Operating Regions BJT Transistor
12
From 3 rd Exercise Turns on/off coils digitally
13
Common Emitter Amplifier BJT Transistor β=100
14
Common Emitter Amplifier BJT Transistor I B = (V in − V B ) / 10000Ω = (V in − 0.7) / 10000Ω I C = β(V in − 0.7) / 10000Ω V out =10000*(V in -0.7)/1000 When V CE = 0.2V I C = 9.8 / 1000Ω = 9.8mA I B = I C / β = 0.098mA V in − 0.7 = (0.098mA)(10000Ω) V in = 1.68V or greater.
15
Power Dissipation P BJT = V CE * i CE Should be below the rated transistor power Important for heat dissipation as well BJT Transistor
16
Darlington Transistors Increased Gain β = β 1 * β 2 V BE = V BE1 + V BE2 Slower Switching 2N6282
17
FET Transistors Analogous to BJT Transistors Output is controlled by input voltage rather than by current 4 Pins vs. 3 BJTFET CollectorDrain BaseGate EmitterSource N/ABody
18
FET Transistors FET (Field Effect Transistors) MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) JFET (Junction Field-Effect Transistor) MESFET HEMT MODFET Most common are the n-channel MOSFET or JFET Jacob Huang
19
FET Transistors – Circuit Symbols In practice the body and source leads are almost always connected Most packages have these leads already connected B S G D B S G D S G D MOSFET JFET
20
MOSFET Metal-Oxide Semiconductor F.E.T. A.K.A. Insulated-Gate FET (IGFET) 2 Modes: Enhancement/Depletion
21
Depletion Mode N-Channel + V gs -> More electrons -> More Current - V gs -> Less electrons -> Less current P-Channel – Reversed Different from BJT
22
Characteristic Curves for D-type Current flow B S G D
23
Enhancement Mode N-Channel V GS > V th -> Turns on device V GS No Current P-Channel Reversed Only E-type used now
24
Modes of Operation RegionCriteriaEffect on Current Cut-offV GS < V th I DS =0 LinearV GS > V th And V DS <V GS -V th Transistor acts like a variable resistor, controlled by V gs SaturationV GS > V th And V DS >V GS -V th Essentially constant current Current flow B S G D
25
Characteristic Curve for E-type Current flow B S G D
26
Power MOSFET Used in high-power applications Heat Sink Vertical layout Not Planar like other transistors
27
Junction gate FET Reverse Bias V GS => Reduces channel size => Reduced Current Defaults “on”
28
JFET as Switch V gs = 0 “on” |V gs |> |V p | “off” V p = Pinch-off or Cut-off Voltage
29
JFET Properties Internal Capacitance Bi-directional Cut-off voltage is varying for each JFET 0.3V – 10V N-Channel – Negative V GS P-Channel – Positive V GS Do not Forward Bias JFET – burn out
30
JFET Characteristic Curve
31
Comparison PropertyBJTMOSFETJFET GmBestWorstMedium SpeedHighMediumLow NoiseModerateWorstBest Good Switch NoYes High-Z GateNoYes ESD Sensitivity LessMoreLess
32
CMOS Complementary MOS Used in Logic Gates P-channel (PMOS) to high N-channel (NMOS) to low HIGH usually +5 V LOW usually ground Q is high when A = 0, Q is low when A = 1
33
References Spring 2007/2008 Slides http://www.made-in-china.com/image/2f0j00ZhaTKREnIQkfM/IC-Transistor.jpg http://en.wikipedia.org/wiki/JFET http://en.wikipedia.org/wiki/MOSFET http://en.wikipedia.org/wiki/Bipolar_junction_transistor http://www.allaboutcircuits.com/vol_3/chpt_2/8.html http://www.mcmanis.com/chuck/robotics/tutorial/h-bridge/images/basic- bjt.gif&imgrefurl=http://www.mcmanis.com/chuck/robotics/tutorial/h- bridge/bjt_theory.html http://www.allaboutcircuits.com/vol_3/chpt_2/6.html http://web.engr.oregonstate.edu/~traylor/ece112/lectures/bjt_reg_of_op.pdf http://hades.mech.northwestern.edu/wiki/index.php/Diodes_and_Transistors#Com mon_Emitter_Amplifier_Circuit http://en.wikipedia.org/wiki/Darlington_transistor http://www.allaboutcircuits.com/vol_3/chpt_6/2.html http://www.allaboutcircuits.com/vol_3/chpt_4/2.html http://www.designers-guide.org/Forum/YaBB.pl?num=1162476437/4 http://en.wikipedia.org/wiki/CMOS
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.