Presentation is loading. Please wait.

Presentation is loading. Please wait.

Q. Huang, J. Xia, M. Yu, K. Benedict, M. Bambacus, 2013. Chapter 10 Cloud-enabling dust storm forecasting, In Spatial Cloud Computing: a practical approach,

Similar presentations


Presentation on theme: "Q. Huang, J. Xia, M. Yu, K. Benedict, M. Bambacus, 2013. Chapter 10 Cloud-enabling dust storm forecasting, In Spatial Cloud Computing: a practical approach,"— Presentation transcript:

1 Q. Huang, J. Xia, M. Yu, K. Benedict, M. Bambacus, 2013. Chapter 10 Cloud-enabling dust storm forecasting, In Spatial Cloud Computing: a practical approach, edited by C.Yang, Q. Huang, Z. Li, C. Xu, K. Liu, CRC Press: pp. 163-178. Chapter 10 Cloud-Enabling Dust Storm Forecasting Qunying Huang, Jizhe Xia, Manzhu Yu, Karl Benedict and Myra Bambacus

2 Q. Huang, J. Xia, M. Yu, K. Benedict, M. Bambacus, 2013. Chapter 10 Cloud-enabling dust storm forecasting, In Spatial Cloud Computing: a practical approach, edited by C.Yang, Q. Huang, Z. Li, C. Xu, K. Liu, CRC Press: pp. 163-178. Learning Objectives 1.General computing challenges for computing intensive applications 2.How cloud computing can help address those issues 3.Configure HPC cluster on the cloud 4.Deploy dust storm model onto the cloud 5.Run the dust storm on the cloud 6.Performance and cost analysis

3 Q. Huang, J. Xia, M. Yu, K. Benedict, M. Bambacus, 2013. Chapter 10 Cloud-enabling dust storm forecasting, In Spatial Cloud Computing: a practical approach, edited by C.Yang, Q. Huang, Z. Li, C. Xu, K. Liu, CRC Press: pp. 163-178. Learning Materials Videos: o Chapter_10_Video.mp4 Scripts, Files and others: o mirror.tar.gz 3

4 Q. Huang, J. Xia, M. Yu, K. Benedict, M. Bambacus, 2013. Chapter 10 Cloud-enabling dust storm forecasting, In Spatial Cloud Computing: a practical approach, edited by C.Yang, Q. Huang, Z. Li, C. Xu, K. Liu, CRC Press: pp. 163-178. Learning Modules 1.Dust storm modeling and challenges 2.Dust storm model cloud deployment General steps Special considerations 3.Use case: Arizona Phoenix 2011 July 05 Nested modeling Cloud performance and efficiency analysis 4.Conclusion and discussions

5 Q. Huang, J. Xia, M. Yu, K. Benedict, M. Bambacus, 2013. Chapter 10 Cloud-enabling dust storm forecasting, In Spatial Cloud Computing: a practical approach, edited by C.Yang, Q. Huang, Z. Li, C. Xu, K. Liu, CRC Press: pp. 163-178. Dust Storm Hazards Desertification Illness & Diseases Traffic & Car accidences Air Pollution Ecological System Global/regional Climate Phoenix Dust Storm a "100-Year Event“, 2011, July 5 th

6 Q. Huang, J. Xia, M. Yu, K. Benedict, M. Bambacus, 2013. Chapter 10 Cloud-enabling dust storm forecasting, In Spatial Cloud Computing: a practical approach, edited by C.Yang, Q. Huang, Z. Li, C. Xu, K. Liu, CRC Press: pp. 163-178. Dust storm models Eta-4bin (Kallos et al., 1997; Nickovic et al., 1997) Low resolution (30 KM) Large area Eta-8bin (Nickovic et al., 1997; Nickovic et al., 2011) 8 categories of dust particles Low resolution (30 KM) Large area NMM-dust (Janjic et al., 2001; Janjic, 2003) High resolution (3 KM) Small area

7 Q. Huang, J. Xia, M. Yu, K. Benedict, M. Bambacus, 2013. Chapter 10 Cloud-enabling dust storm forecasting, In Spatial Cloud Computing: a practical approach, edited by C.Yang, Q. Huang, Z. Li, C. Xu, K. Liu, CRC Press: pp. 163-178. Dust storm modeling Dust storm modeling (Purohit et al., 1999 ) Divide the domain into three-dimensional grid cells Solve a series of numerical equations on each cell Numerical calculations are repeated on each cell

8 Q. Huang, J. Xia, M. Yu, K. Benedict, M. Bambacus, 2013. Chapter 10 Cloud-enabling dust storm forecasting, In Spatial Cloud Computing: a practical approach, edited by C.Yang, Q. Huang, Z. Li, C. Xu, K. Liu, CRC Press: pp. 163-178. Dust Storm Forecasting Challenges Computing Intensity Big Data Large Geographic Scope Time Critical Task Dust Storm Forecasting O(n^4) Input/output Finish One-day forecasting in 2 hours Southwest U.S.

9 Q. Huang, J. Xia, M. Yu, K. Benedict, M. Bambacus, 2013. Chapter 10 Cloud-enabling dust storm forecasting, In Spatial Cloud Computing: a practical approach, edited by C.Yang, Q. Huang, Z. Li, C. Xu, K. Liu, CRC Press: pp. 163-178. Learning Modules 1.Dust storm modeling and challenges 2.Dust storm model cloud deployment General steps Special considerations 3.Use case: Arizona Phoenix 2011 July 05 Nested modeling Cloud performance and efficiency analysis 4.Conclusion and discussions

10 Q. Huang, J. Xia, M. Yu, K. Benedict, M. Bambacus, 2013. Chapter 10 Cloud-enabling dust storm forecasting, In Spatial Cloud Computing: a practical approach, edited by C.Yang, Q. Huang, Z. Li, C. Xu, K. Liu, CRC Press: pp. 163-178. Dust Storm Model Deployment onto the Cloud 2. Launch one cluster instance as the head node 3. SSH to the instance 1. Authorize network access 10. Export the NFS directory to the computing node 10. Export the NFS directory to the computing node 9. Deploy the model on the NFS exporting directory 9. Deploy the model on the NFS exporting directory 8. Mount the volume to the NFS exporting directory 8. Mount the volume to the NFS exporting directory 4. Install the software dependency and middleware, e.g., NFS, and MPICH2 4. Install the software dependency and middleware, e.g., NFS, and MPICH2 5. Create a new AMI from the head node and start an instance from the new AMI 5. Create a new AMI from the head node and start an instance from the new AMI 11. Configure and test the model 12. Create two new AMIs from the running instances 6. Configure the middleware on both nodes to enable communication 6. Configure the middleware on both nodes to enable communication 7. Create an EBS volume Video: Chapter_10_Video.mp4

11 Q. Huang, J. Xia, M. Yu, K. Benedict, M. Bambacus, 2013. Chapter 10 Cloud-enabling dust storm forecasting, In Spatial Cloud Computing: a practical approach, edited by C.Yang, Q. Huang, Z. Li, C. Xu, K. Liu, CRC Press: pp. 163-178. Step 1. Authorize network Access Dust Storm Model Deployment onto the Cloud Configure firewall rule for the firewall group “hpc” Open port 22 for SSH Open port 9000 -10000 for MPICH2 Video: Chapter_10_Video.mp4 0:00 – 1:35

12 Q. Huang, J. Xia, M. Yu, K. Benedict, M. Bambacus, 2013. Chapter 10 Cloud-enabling dust storm forecasting, In Spatial Cloud Computing: a practical approach, edited by C.Yang, Q. Huang, Z. Li, C. Xu, K. Liu, CRC Press: pp. 163-178. Step 2. Lunch one cluster instance as the head node Dust Storm Model Deployment onto the Cloud Use Amazon cluster compute AMI Create a ssh key pair “hpc”, and save the public key pair file to local storage as “hpc.pem” Use the security group “hpc” Step 3. SSH to the instance Use the public ssh key file “hpc.pem” Change the user permission for “hpc.pem” as 600 (user root read permission only) Video: Chapter_10_Video.mp4 1:35 – 4:10

13 Q. Huang, J. Xia, M. Yu, K. Benedict, M. Bambacus, 2013. Chapter 10 Cloud-enabling dust storm forecasting, In Spatial Cloud Computing: a practical approach, edited by C.Yang, Q. Huang, Z. Li, C. Xu, K. Liu, CRC Press: pp. 163-178. Step 4. Install software dependencies [root@domU-head~] yum install gcc gcc-c++ autoconf automake [root@domU-head~] yum –y install nfs-utilsnfs-utils-lib sytem-config-nfs #install NFS [root@domU-head~] wget http://www.mcs.anl.gov/research/projects/mpich2staging/http://www.mcs.anl.gov/research/projects/mpich2staging/ goodell/downloads/tarballs/1.5/mpich2-1.5.tar.gz # download MPICH2 package [root@domU-head~] tar –zvxf mpich2-1.5.tar.gz # Unzip [root@domU-head~] mkdir /home/clouduser/mpich2-install # create an installation directory [root@domU-head~] cd mpich2-1.5 [root@domU-head~]./configure -prefix=/home/clouduser/mpich2-install --enable-g=all --enable-fc --enable-shared --enable-sharedlibs=gcc --enable-debuginfo [root@domU-head~] make # Build MPICH2 [root@domU-head~] make install # Install MPICH2 Install NFS and MPICH2: Dust Storm Model Deployment onto the Cloud

14 Q. Huang, J. Xia, M. Yu, K. Benedict, M. Bambacus, 2013. Chapter 10 Cloud-enabling dust storm forecasting, In Spatial Cloud Computing: a practical approach, edited by C.Yang, Q. Huang, Z. Li, C. Xu, K. Liu, CRC Press: pp. 163-178. Step 5. Create a new AMI from the head node Dust Storm Model Deployment onto the Cloud Create a computing node from the new AMI [root@domU-head ~] mkidr /headMnt # create a NFS export directory [root@domU-head ~] echo "/headMnt *rw " >> /etc/exports [root@domU-head ~] exportfs -ra [root@domU-head ~] service nfs start #start up NFS Configure and start NFS: Step 4. Install software dependencies Video: Chapter_10_Video.mp4 4:10 – 13:02

15 Q. Huang, J. Xia, M. Yu, K. Benedict, M. Bambacus, 2013. Chapter 10 Cloud-enabling dust storm forecasting, In Spatial Cloud Computing: a practical approach, edited by C.Yang, Q. Huang, Z. Li, C. Xu, K. Liu, CRC Press: pp. 163-178. Step 6. Configure the head node and computing node Keyless access from the head node to the computing nodes [root@domU-head ~] vi /etc/hosts #access to the hosts list of the head node [root@domU-head ~] ssh-keygen -t rsa #create a public key at the head node [root@domU-computing~] mkdir –p /root/.ssh/ [root@domU-computing ~] scp root@domU-head: /root/.ssh/id_ras.pub /root/.ssh/ #copy the public key from the head node to the computing node [root@domU-computing ~] cat /root/.ssh/id_ras.pub >> /root/.ssh/authorized_keys Dust Storm Model Deployment onto the Cloud Video: Chapter_10_Video.mp4 13:02- 17:55

16 Q. Huang, J. Xia, M. Yu, K. Benedict, M. Bambacus, 2013. Chapter 10 Cloud-enabling dust storm forecasting, In Spatial Cloud Computing: a practical approach, edited by C.Yang, Q. Huang, Z. Li, C. Xu, K. Liu, CRC Press: pp. 163-178. Step 7. Create an EBS volume Dust Storm Model Deployment onto the Cloud Attach to the head node Step 8. Mount the volume to the NFS exporting directory Make a file system for the EBS volume Mount the volume to head node directory /headMnt Video: Chapter_10_Video.mp4 13:02 – 20:40

17 Q. Huang, J. Xia, M. Yu, K. Benedict, M. Bambacus, 2013. Chapter 10 Cloud-enabling dust storm forecasting, In Spatial Cloud Computing: a practical approach, edited by C.Yang, Q. Huang, Z. Li, C. Xu, K. Liu, CRC Press: pp. 163-178. Step 9. Deploy the model Dust Storm Model Deployment onto the Cloud Download the model under NFS directory (/headMnt) Export the NFS directory (/headMnt) to the computing node [root@domU-computing ~] mkdir /computingMnt # create the directory [root@domU-computing ~] mount -t nfs -o rw domU-head:/headMnt /headMnt #Mount the volume to the NFS export directory Step 10. Export the NFS directory to the computing node Video: Chapter_10_Video.mp4 20:40 – 24:19

18 Q. Huang, J. Xia, M. Yu, K. Benedict, M. Bambacus, 2013. Chapter 10 Cloud-enabling dust storm forecasting, In Spatial Cloud Computing: a practical approach, edited by C.Yang, Q. Huang, Z. Li, C. Xu, K. Liu, CRC Press: pp. 163-178. Step 11. Configure and Test the model Dust Storm Model Deployment onto the Cloud cd /headMnt/mirror/performancetest/scripts./run_test.sh ec2 >& ec2.log & Step 12. Create two new AMIs from the running instances Video: Chapter_10_Video.mp4 24:19 – 28:18

19 Q. Huang, J. Xia, M. Yu, K. Benedict, M. Bambacus, 2013. Chapter 10 Cloud-enabling dust storm forecasting, In Spatial Cloud Computing: a practical approach, edited by C.Yang, Q. Huang, Z. Li, C. Xu, K. Liu, CRC Press: pp. 163-178. Learning Modules 1.Dust storm modeling and challenges 2.Dust storm model cloud deployment General steps Special considerations 3.Use case: Arizona Phoenix 2011 July 05 Nested modeling Cloud performance and efficiency analysis 4.Conclusion and discussions

20 Q. Huang, J. Xia, M. Yu, K. Benedict, M. Bambacus, 2013. Chapter 10 Cloud-enabling dust storm forecasting, In Spatial Cloud Computing: a practical approach, edited by C.Yang, Q. Huang, Z. Li, C. Xu, K. Liu, CRC Press: pp. 163-178. Special considerations 1.Configuring a virtual cluster environment Create placement group 2.Loosely coupled nested modeling and cloud computing 3.Auto-scaling write scripts with the EC2 APIs

21 Q. Huang, J. Xia, M. Yu, K. Benedict, M. Bambacus, 2013. Chapter 10 Cloud-enabling dust storm forecasting, In Spatial Cloud Computing: a practical approach, edited by C.Yang, Q. Huang, Z. Li, C. Xu, K. Liu, CRC Press: pp. 163-178. Create placement group 1 2

22 Q. Huang, J. Xia, M. Yu, K. Benedict, M. Bambacus, 2013. Chapter 10 Cloud-enabling dust storm forecasting, In Spatial Cloud Computing: a practical approach, edited by C.Yang, Q. Huang, Z. Li, C. Xu, K. Liu, CRC Press: pp. 163-178. Learning Modules 1.Dust storm modeling and challenges 2.Dust storm model cloud deployment General steps Special considerations 3.Use case: Arizona Phoenix 2011 July 05 Nested modeling Cloud performance and efficiency analysis 4.Conclusion and discussions

23 Q. Huang, J. Xia, M. Yu, K. Benedict, M. Bambacus, 2013. Chapter 10 Cloud-enabling dust storm forecasting, In Spatial Cloud Computing: a practical approach, edited by C.Yang, Q. Huang, Z. Li, C. Xu, K. Liu, CRC Press: pp. 163-178. Nested model Tightly Nesting AOI: NMM-dust (3KM) AOI: NMM-dust (3KM) AOI: NMM-dust (3KM) AOI: NMM-dust (3KM) ETA-8bin (30KM) Loosely Nesting Nested Subdomain #2 (3KM) Nested Subdomain #2 (3KM) Nested Subdomain #3 (3KM) Nested Subdomain #3 (3KM) Domain #1(30KM) A model run with multiple resolutions Modifications of models (Michalakes et al., 1998) Knowledge of placement for high-resolution nested subdomains ETA-8bin identifies AOIs(Area of Interesting) NMM-dust performs forecasting over AOIs  Nested model: provide high resolution results for one or several area of interests over a large area.

24 Q. Huang, J. Xia, M. Yu, K. Benedict, M. Bambacus, 2013. Chapter 10 Cloud-enabling dust storm forecasting, In Spatial Cloud Computing: a practical approach, edited by C.Yang, Q. Huang, Z. Li, C. Xu, K. Liu, CRC Press: pp. 163-178. Loosely Nested Model Low-resolution model domain area and sub-regions (Area Of Interests, AOIs) identified for high-resolution model execution Low-resolution model Results Figure a. 18 AOIs Distribution

25 Q. Huang, J. Xia, M. Yu, K. Benedict, M. Bambacus, 2013. Chapter 10 Cloud-enabling dust storm forecasting, In Spatial Cloud Computing: a practical approach, edited by C.Yang, Q. Huang, Z. Li, C. Xu, K. Liu, CRC Press: pp. 163-178. Learning Modules 1.Dust storm modeling and challenges 2.Dust storm model cloud deployment General steps Special considerations 3.Use case: Arizona Phoenix 2011 July 05 Nested modeling Cloud performance and efficiency analysis 4.Conclusion and discussions

26 Q. Huang, J. Xia, M. Yu, K. Benedict, M. Bambacus, 2013. Chapter 10 Cloud-enabling dust storm forecasting, In Spatial Cloud Computing: a practical approach, edited by C.Yang, Q. Huang, Z. Li, C. Xu, K. Liu, CRC Press: pp. 163-178. Use 2 hours for one-day forecasting over Southwest of U.S. (37 X 20 degree) 18 Subregions run on 18 Amazon EC2 virtual cluster Run Under Cloud >> Performance analysis

27 Q. Huang, J. Xia, M. Yu, K. Benedict, M. Bambacus, 2013. Chapter 10 Cloud-enabling dust storm forecasting, In Spatial Cloud Computing: a practical approach, edited by C.Yang, Q. Huang, Z. Li, C. Xu, K. Liu, CRC Press: pp. 163-178. Run Under Cloud >> Cost analysis cont The yearly cost of a local cluster is around 12.7 times higher than that of the EC2 cloud service if 28 EC2 instances (with 400 CPU cores) are leveraged to handle the high resolution and concurrent computing requirements for a duration of 48 hours.

28 Q. Huang, J. Xia, M. Yu, K. Benedict, M. Bambacus, 2013. Chapter 10 Cloud-enabling dust storm forecasting, In Spatial Cloud Computing: a practical approach, edited by C.Yang, Q. Huang, Z. Li, C. Xu, K. Liu, CRC Press: pp. 163-178. Run Under Cloud >> Cost analysis ItemsLocal clusterAmazon EC2Options for cloud environment Procure cluster~4 weeksNoneN/A Configure cluster operating system (OS) ~1 weeks None Use a public AMI with OS installed ~1 weekHarden image from scratch Configure dust storm model~1 days ~2 hours Use a public AMI with most required software dependencies installed ~1 daysHarden image from scratch Start cluster120s45s N/A Stop cluster60s57s Resume clusterN/A45s Total time needed for the first time deployment ~ 5 weeks ~2 HoursUse a public AMI ~ 1 weekHarden image from scratch

29 Q. Huang, J. Xia, M. Yu, K. Benedict, M. Bambacus, 2013. Chapter 10 Cloud-enabling dust storm forecasting, In Spatial Cloud Computing: a practical approach, edited by C.Yang, Q. Huang, Z. Li, C. Xu, K. Liu, CRC Press: pp. 163-178.  Large-scale forecasting is Computable (2 hours) Loosely coupled nested model Cloud computing  Being capable of provisioning a large amount of computing power in a few minutes  Economically sustaining low access rates and low resolution models Conclusion

30 Q. Huang, J. Xia, M. Yu, K. Benedict, M. Bambacus, 2013. Chapter 10 Cloud-enabling dust storm forecasting, In Spatial Cloud Computing: a practical approach, edited by C.Yang, Q. Huang, Z. Li, C. Xu, K. Liu, CRC Press: pp. 163-178. Discussion questions 1.What are computing challenges for dust storm forecasting? 2.What are the general steps to deploy dust storm model on the cloud? 3.Which instance type is better for dust storm forecasting, regular instance or HPC instance? Why? 4.How to configure a virtual high performance computing (HPC) cluster to support computing-intensive applications? 5.How Elastic Block Storage (ebs) service is used in supporting the dust storm model deployment to the cloud? 6.How to create a placement group for HPC instances using both Amazon web console management and command line tools? Why we need this step? 7.Compared to Chapter 5 deployment for general applications onto the cloud, what are the special considerations for dust storm model? 8.Why can cloud computing achieve cost-efficiency? 9.Why cloud computing provides a good solution to support disruptive event (e.g., dust storm) simulation? 10.What are the remaining issues while using cloud computing to support dust storm simulation?

31 Q. Huang, J. Xia, M. Yu, K. Benedict, M. Bambacus, 2013. Chapter 10 Cloud-enabling dust storm forecasting, In Spatial Cloud Computing: a practical approach, edited by C.Yang, Q. Huang, Z. Li, C. Xu, K. Liu, CRC Press: pp. 163-178. 1.Huang Q., Yang C., Benedict K., Chen, S., Rezgui A., Xie J., 2013. Enabling Dust storm Forecasting Using Cloud Computing, International Journal of Digital Earth. DOI:10.1080/17538947.2012.749949. 2.Huang Q., Yang C., Benedict K., Rezgui A., Xie J., Xia J., Chen, S., 2012. Using Adaptively Coupled Models and High-performance Computing for Enabling the Computability of Dust Storm Forecasting, International Journal of Geographic Information Science. DOI:10.1080/13658816.2012.715650. 3.Xie J., Yang C., Zhou B., Huang Q., 2010. High Performance Computing for the Simulation of Dust Storms. Computers, Environment, and Urban Systems, 34(4): 278-290 Reference


Download ppt "Q. Huang, J. Xia, M. Yu, K. Benedict, M. Bambacus, 2013. Chapter 10 Cloud-enabling dust storm forecasting, In Spatial Cloud Computing: a practical approach,"

Similar presentations


Ads by Google