Download presentation
Presentation is loading. Please wait.
Published byJonah Daniels Modified over 9 years ago
1
Zhang Xintong 11/26/2014 Process technologies for making FinFETs
2
Outline 1. Conventional MOSFET scaling limit 2.Structure transformation——FinFETs 3.Fabrication process of FinFETs and CMOS integration 4.References
3
Conventional MOSFET scaling limit Benefits of scaling: Increase transistor density Dennard’s scaling law (increase switching speed, reduce power dissipation, improve power-delay product) Short channel effects: DIBL effect (Drain induced barrier lowering), the width of the drain-junction depletion region increases as V D increases, causing the decrease of Vth. Degradation of the subthreshold slope.
4
FinFET Structure transform: Single-gate transistor Multi-gate transistor a.SOI FinFET b.SOI tri-gate MOSFET c.SOI Π-gate MOSFET d.SOI Ω-gate MOSFET e.SOI gate-all-around MOSFET f.Bulk tri-gate MOSFET Advantage: Higher drive current Better electrostatic control (lower off-state leakage) Lower supply voltage requirements
5
FinFET fabrication First FinFET, fabricated on top of SOI. Gate length~20nm, Fin width~15nm , Fin height~50nm. The gates are self-aligned and are aligned to the S/D; S/D is raised to reduce the parasitic resistance; New low-temperature gate or ultra-thin gate dielectric materials can be used because they are deposited after the S/D. Contact: Poly-Si B-doped poly-SiGe
6
FinFET fabrication Fin formation(RIE) Gate stack formation(EBL,etch) Extension implant(NMOS,As + ; PMOS,BF + ) Spacer formation(nitride) Epitaxial raised source/drain Deep source/drain implantation Long channel NMOS FinFETs have higher G than FinFETs. Long channel PMOS FinFETs have lower G than FinFETs. Lg: 30nm, Tsi: 20nm Fin height: 65nm
7
Device optimization Optimize contact-etch-stop-layer and High-K/Metal gate stack - excellent Vth roll-off immunity Silicon surface passivation during HK/MG stack formation improve interface quality and scale EOT(equivalent oxide thickness) Strain enhancement techniques(eg. embedded SiGe S/D in PMOS) I ON and hole mobility improvement Fin pitch reduction Larger drive current per layout footprint
8
CMOS FinFETs Intel has chosen to use bulk substrates instead of SOI substrates for its 22-nm tri-gate process.
9
References 1. Ferain I, Colinge C A, Colinge J P. Multigate transistors as the future of classical metal-oxide-semiconductor field- effect transistors[J]. Nature, 2011, 479(7373): 310-316. 2. Hisamoto D, Lee W C, Kedzierski J, et al. A folded-channel MOSFET for deep-sub-tenth micron era[J]. IEDM Tech. Dig, 1998, 1998: 1032-1034. 3. Chen H Y, Huang C C, Huang C C, et al. Scaling of CMOS FinFETs towards 10 nm[C]//VLSI Technology, Systems, and Applications, 2003 International Symposium on. IEEE, 2003: 46-48. 4. Huang X, Lee W C, Kuo C, et al. Sub 50-nm FinFET: PMOS[C]//Electron Devices Meeting, 1999. IEDM'99. Technical Digest. International. IEEE, 1999: 67-70. 5. Yeh C C, Chang C S, Lin H N, et al. A low operating power FinFET transistor module featuring scaled gate stack and strain engineering for 32/28nm SoC technology[C]//Electron Devices Meeting (IEDM), 2010 IEEE International. IEEE, 2010: 34.1. 1-34.1. 4. 6. Wu C C, Lin D W, Keshavarzi A, et al. High performance 22/20nm FinFET CMOS devices with advanced high- K/metal gate scheme[C]//Electron Devices Meeting (IEDM), 2010 IEEE International. IEEE, 2010: 27.1. 1-27.1. 4. 7. Kedzierski J, Ieong M, Nowak E, et al. Extension and source/drain design for high-performance FinFET devices[J]. Electron Devices, IEEE Transactions on, 2003, 50(4): 952-958. 8. Kavalieros J, Doyle B, Datta S, et al. Tri-gate transistor architecture with high-k gate dielectrics, metal gates and strain engineering[C]//VLSI Technology, 2006. Digest of Technical Papers. 2006 Symposium on. IEEE, 2006: 50-51.
10
Thank you!
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.