Download presentation
Presentation is loading. Please wait.
Published byJoy Hunter Modified over 9 years ago
1
WHAT CAUSES CLASTIC PARTICLES IN WATER TO MOVE?
2
START WITH WHAT WE KNOW: Surface waters occur in channels (rivers) or during overland flow. In either case we can imagine them to be really “wet” slopes.
3
WILL PARTICLE MOVE ON THIS SLOPE?
4
FORCERESISTANCE
5
WILL PARTICLE MOVE ON THIS SLOPE? FORCERESISTANCE Mass Sin (slope)
6
WILL PARTICLE MOVE ON THIS SLOPE? FORCERESISTANCE Mass Sin (slope) Normal Stress (Mass. Cos (Slope)) Friction Cohesion
7
WILL PARTICLE MOVE ON THIS SLOPE? FORCERESISTANCE Mass Sin (slope) Normal Stress (Mass. Cos (Slope)) Friction Cohesion 2 - 5°
8
WILL PARTICLE MOVE ON THIS SLOPE? FORCERESISTANCE Mass Sin (slope) ~ 0 Normal Stress (Mass. Cos (Slope)) Friction Cohesion 2 - 5° (Mass. ~ 1)
9
WILL PARTICLE MOVE ON THIS SLOPE? FORCERESISTANCE Mass Sin (slope) ~ 0 Friction Cohesion 2 - 5° Mass
10
WILL PARTICLE MOVE ON THIS SLOPE? FORCERESISTANCE Mass Sin (slope) ~ 0 Friction Cohesion 2 - 5° Mass BUT PARTICLES DO MOVE IN RIVERS, SO WHAT FORCE HAVE WE MISSED?
11
WILL PARTICLE MOVE ON THIS SLOPE? FORCERESISTANCE Velocity of water. Kinetic energy produced as water moves down slope from higher on slope (more potential energy) to lower on slope (less potential energy). Friction Cohesion 2 - 5° Mass
12
WILL PARTICLE MOVE ON THIS SLOPE? FORCERESISTANCE Velocity of water. 2 - 5° Mass
13
FORCE RESISTANCE HJULSTRÖM’S DIAGRAM
14
Velocity FORCE RESISTANCE HJULSTROM’S DIAGRAM
15
Weight Velocity FORCE RESISTANCE HJULSTROM’S DIAGRAM I. WEIGHT AND VELOCITY
16
Weight Velocity Grain Size HJULSTROM’S DIAGRAM I. WEIGHT AND VELOCITY
17
Weight Velocity Grain Size ClaySiltSandGravelPebbles HJULSTROM’S DIAGRAM I. WEIGHT AND VELOCITY
18
Weight Velocity ClaySiltSandGravelPebbles Small size provides little resistance. HJULSTROM’S DIAGRAM I. WEIGHT AND VELOCITY
19
Weight Velocity ClaySiltSandGravelPebbles Needs small force, (velocity) to overcome resistance V* clay HJULSTROM’S DIAGRAM I. WEIGHT AND VELOCITY
20
Weight Velocity ClaySiltSandGravelPebbles V* clay HJULSTROM’S DIAGRAM I. WEIGHT AND VELOCITY
21
Weight Velocity ClaySiltSandGravelPebbles V* clay V* silt HJULSTROM’S DIAGRAM I. WEIGHT AND VELOCITY
22
Weight Velocity ClaySiltSandGravelPebbles V* clay V* silt V* sand HJULSTROM’S DIAGRAM I. WEIGHT AND VELOCITY
23
Weight Velocity ClaySiltSandGravelPebbles V* clay V* silt V* sand V* grav. HJULSTROM’S DIAGRAM I. WEIGHT AND VELOCITY
24
Weight Velocity ClaySiltSandGravelPebbles V* clay V* silt V* sand V* grav. V* pebb. HJULSTROM’S DIAGRAM I. WEIGHT AND VELOCITY
25
Weight Velocity ClaySiltSandGravelPebbles FORCES > RESISTANCES MOTION RESISTANCES > FORCES NO MOTION HJULSTROM’S DIAGRAM I. WEIGHT AND VELOCITY
26
Weight Velocity ClaySiltSandGravelPebbles RESISTANCES > FORCES NO MOTION FORCES > RESISTANCES MOTION HJULSTROM’S DIAGRAM I. WEIGHT AND VELOCITY
27
WILL PARTICLE MOVE ON THIS SLOPE? FORCERESISTANCE Velocity of water. 2 - 5° Mass Cohesion
28
Weight Velocity ClaySiltSandGravelPebbles HJULSTROM’S DIAGRAM II. {WEIGHT + COHESION} AND VELOCITY
29
Weight Velocity ClaySiltSandGravelPebbles HJULSTROM’S DIAGRAM II. {WEIGHT + COHESION} AND VELOCITY Cohesion
30
Weight Velocity ClaySiltSandGravelPebbles HJULSTROM’S DIAGRAM II. {WEIGHT + COHESION} AND VELOCITY Cohesion FORCES > RESISTANCES MOTION RESISTANCES > FORCES NO MOTION RESISTANCES > FORCES NO MOTION
31
WILL PARTICLE MOVE ON THIS SLOPE? FORCERESISTANCE Velocity of water. 2 - 5° Mass Cohesion Friction
32
WILL PARTICLE MOVE ON THIS SLOPE? FORCERESISTANCE Velocity of water. 2 - 5° Mass Cohesion Friction
33
Weight Velocity ClaySiltSandGravelPebbles HJULSTROM’S DIAGRAM III. {WEIGHT+COHESION+FRICTION} AND VELOCITY Cohesion RESISTANCES > FORCES NO MOTION RESISTANCES > FORCES NO MOTION FORCES > RESISTANCES MOTION TRANSITION
34
ONCE IN MOTION WILL PARTICLE CONTINUE TO MOVE IF VELOCITY DROPS? FORCERESISTANCE Velocity of water. 2 - 5° Mass Cohesion Friction HIGH VELOCITY BIG PARTICLES
35
Weight Velocity ClaySiltSandGravelPebbles HJULSTROM’S DIAGRAM Cohesion TRANSITION HIGH VELOCITY MOTION IV. TRANSPORTATION
36
Weight Velocity ClaySiltSandGravelPebbles HJULSTROM’S DIAGRAM Cohesion TRANSITION HIGH VELOCITY MOTION VELOCITY DECLINES IV. TRANSPORTATION
37
Weight Velocity ClaySiltSandGravelPebbles HJULSTROM’S DIAGRAM Cohesion TRANSITION HIGH VELOCITY MOTION VELOCITY DECLINES LOWER VELOCITY IV. TRANSPORTATION
38
ONCE IN MOTION WILL PARTICLE CONTINUE TO MOVE IF VELOCITY DROPS? FORCERESISTANCE Velocity of water. 2 - 5° Mass Cohesion Friction LOWER VELOCITY BIG PARTICLES
39
ONCE IN MOTION WILL PARTICLE CONTINUE TO MOVE IF VELOCITY DROPS? FORCERESISTANCE Velocity of water. 2 - 5° Mass Cohesion Friction LOWER VELOCITY BIG PARTICLES MASS CAUSES PARTICLE TO SINK TO BOTTOM – TO BE “DEPOSITED”.
40
Weight Velocity ClaySiltSandGravelPebbles HJULSTROM’S DIAGRAM IV. TRANSPORTATION Cohesion TRANSITION HIGH VELOCITY MOTION VELOCITY DECLINES LOWER VELOCITY DEPOSITION
41
Weight Velocity ClaySiltSandGravelPebbles HJULSTROM’S DIAGRAM IV. TRANSPORTATION Cohesion TRANSITION FORCES > RESISTANCES MOTION RESISTANCES > FORCES NO MOTION & DEPOSITION
42
ONCE IN MOTION WILL PARTICLE CONTINUE TO MOVE IF VELOCITY DROPS? FORCERESISTANCE Velocity of water. 2 - 5° Mass Cohesion Friction HIGH VELOCITY SMALL PARTICLES
43
Weight Velocity ClaySiltSandGravelPebbles HJULSTROM’S DIAGRAM IV. TRANSPORTATION Cohesion TRANSITION HIGH VELOCITY MOTION
44
Weight Velocity ClaySiltSandGravelPebbles HJULSTROM’S DIAGRAM Cohesion TRANSITION HIGH VELOCITY MOTION VELOCITY DECLINES IV. TRANSPORTATION
45
Weight Velocity ClaySiltSandGravelPebbles HJULSTROM’S DIAGRAM Cohesion TRANSITION HIGH VELOCITY MOTION VELOCITY DECLINES LOWER VELOCITY IV. TRANSPORTATION
46
ONCE IN MOTION WILL PARTICLE CONTINUE TO MOVE IF VELOCITY DROPS? FORCERESISTANCE Velocity of water. 2 - 5° Mass Cohesion Friction LOWER VELOCITY SMALL PARTICLES ONCE IN MOTION THERE IS NO COHESION OR FRICTION!
47
ONCE IN MOTION WILL PARTICLE CONTINUE TO MOVE IF VELOCITY DROPS? FORCERESISTANCE Velocity of water. 2 - 5° Mass Cohesion Friction LOWER VELOCITY SMALL PARTICLES MASS IS SO SMALL THAT PARTICLE CONTINUES TO BE “TRANSPORTED” AT LOW VELOCITY.
48
Weight Velocity ClaySiltSandGravelPebbles HJULSTROM’S DIAGRAM IV. TRANSPORTATION Cohesion TRANSITION FORCES > RESISTANCES MOTION & EROSION RESISTANCES > FORCES NO MOTION & DEPOSITION RESISTANCES > FORCES NO MOTION BUT TRANSPORT
50
THE LINK TO THE LAND-BASED PORTION OF THE HYDROLOGIC CYCLE?
51
ClaySiltSandGravel Pebbles EROSION DEPOSITION TRANSPORT Velocity HYDROGRAPHHJULSTRÖM’S DIAGRAM Time Quantity of Streamflow
53
ClaySiltSandGravel Pebbles Velocity HYDROGRAPHHJULSTROM’S DIAGRAM Time Quantity of Streamflow
55
ClaySiltSandGravel Pebbles Velocity HYDROGRAPHHJULSTROM’S DIAGRAM Time Quantity of Streamflow
57
ClaySiltSandGravel Pebbles Velocity HYDROGRAPHHJULSTROM’S DIAGRAM Time Quantity of Streamflow
59
ClaySiltSandGravel Pebbles Velocity HYDROGRAPHHJULSTROM’S DIAGRAM Time Quantity of Streamflow
61
ClaySiltSandGravel Pebbles Velocity HYDROGRAPHHJULSTROM’S DIAGRAM Time Quantity of Streamflow
63
ClaySiltSandGravel Pebbles Velocity HYDROGRAPHHJULSTROM’S DIAGRAM Time Quantity of Streamflow
65
ClaySiltSandGravel Pebbles Velocity HYDROGRAPHHJULSTROM’S DIAGRAM Time Quantity of Streamflow
67
ClaySiltSandGravel Pebbles Velocity HYDROGRAPHHJULSTROM’S DIAGRAM Time Quantity of Streamflow
69
ClaySiltSandGravel Pebbles Velocity HYDROGRAPHHJULSTROM’S DIAGRAM Time Quantity of Streamflow
71
ClaySiltSandGravel Pebbles Velocity HYDROGRAPHHJULSTROM’S DIAGRAM Time Quantity of Streamflow
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.