Download presentation
Presentation is loading. Please wait.
Published byAllen Fowler Modified over 9 years ago
1
2 step problems 5) Solve 0.5Cos(x) + 3 = 2.6 1) Solve 4Sin(x) = 2.6 2) Solve Cos(x) + 3 = 3.28 3) Solve 2Tan(x) + 2 = 5.34 4) Solve 2 + Sin(x) = 1.85 180 0, 360 A TC S 180 0, 360 A TC S 180 0, 360 A TC S 180 0, 360 A TC S 180 0, 360 A TC S EndHome
2
2 step solutions A EndHome 1) Solve 4Sin(x) = 2.6 1 st solution: x = 40.5º 180 0, 360 A TC S Positive Sin so quadrant 1 & 2 x = Sin -1 0.65 = 40.5º 2 nd solution: x = 180 – 40.5 = 139.5° Sin x = 0.65 Divide by 4 2) Solve Cos(x) + 3 = 3.28 1 st solution: x = 73.7º 180 0, 360 A TC S Positive Cos so quadrant 1 & 4 x = Cos -1 0.28 = 73.7º 2 nd solution: x = 360 – 73.7 = 286.3° Cos x = 0.28 Subtract 3
3
2 step solutions B Home 3) Solve 2Tan(x) + 2 = 5.34 1 st solution: x = 59.1º 180 0, 360 A TC S Positive Tan so quadrant 1 & 3 x = Tan -1 1.67 = 59.1º 2 nd solution: x = 180 + 59.1 = 239.1° Tan x = 1.67 Divide by 2 2Tan x = 3.34 Subtract 2 Inverse Tan 4) Solve 2 + Sin(x) = 1.85 1 st solution: x = 180 + 8.6 = 188.6º 180 0, 360 A TC S Negative Sin so quadrant 3 & 4 x = Sin -1 0.15 = 8.6º 2 nd solution: x = 360 – 8.6 = 351.4° Sin x = -0.15 Subtract 2 Positive value End
4
2 step solutions C 5) Solve 0.5Cos(x) + 3 = 2.6 1 st solution: x = 180 – 36.9 = 143.1 ° 180 0, 360 A TC S Negative Cos so quadrant 2 & 3 x = Cos -1 0.8 = 36.9º 2 nd solution: x = 180 + 36.9 = 216.9° 0.5Cos x = -0.4 Subtract 3 Cos x = -0.8 Divide by 0.5 Positive value The original graph y = 0.5Cosx + 3 y = 2.6 x = 143.9º& 216.9º EndHome
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.