Presentation is loading. Please wait.

Presentation is loading. Please wait.

X-ray States of Black Hole Binaries & Possible Applications for General Relativity Ron Remillard, Center for Space Research, M.I.T. This presentation will.

Similar presentations


Presentation on theme: "X-ray States of Black Hole Binaries & Possible Applications for General Relativity Ron Remillard, Center for Space Research, M.I.T. This presentation will."— Presentation transcript:

1 X-ray States of Black Hole Binaries & Possible Applications for General Relativity Ron Remillard, Center for Space Research, M.I.T. This presentation will probably involve audience discussion, which will create action items. Use PowerPoint to keep track of these action items during your presentation In Slide Show, click on the right mouse button Select “Meeting Minder” Select the “Action Items” tab Type in action items as they come up Click OK to dismiss this box This will automatically create an Action Item slide at the end of your presentation with your points entered.

2 Outline Progress for Black Hole Binaries  Intensive Monitoring Campaigns: RXTE, radio, optical  Modified Definitions of X-ray States: Physical Elements  Each State : Applications for General Relativity  Each State : Problems in Accretion Physics Prospects for Advancement  Multi-X-ray Observations (broad-band and high-resolution Spectroscopy & Timing & Imaging)  Multi-Frequency Observations  Engaging Theorists

3 Compact Objects Masses from binary motion of companion stars or pulsars Black Hole Binaries M x = 4-18 M o Neutron Stars (X-ary & radio pulsars) M x ~ 1.4 M o

4 Black Holes in the Milky Way 16 Black-Hole Binaries in the Galaxy (Jerry Orosz, SDSU) Scaled, tilted, and colored for surface temp. of companion star. Black Hole Properties: mass (M x ) and spin (a * = cJ / GM x 2 )

5 BH in Milky Way: 15/16 are transients XTE J1550-564 First recorded outburst: 1998 Sept 6 Optical study in quiescence: 1.54 day binary, 9.6 M o black hole + K subgiant star d ~ 5 kpc ; Peak L x ~ 20,000 L o

6 Black Holes in the Milky Way

7 X-ray States: thermal & non-thermal Spectral components

8 X-ray States of Black Hole Binaries McClintock & Remillard 2003 State modified descriptions “very high” “steep power law” power law,  ~ 2.4-3.0, f pow > 50% or f pow > 20% + QPOs “high/soft” “thermal dominant” f pow < 20%, no QPOs, rms (0.1-10 Hz) < 0.06 at 2-30 keV “low/hard” “low-hard (steady jet)” f pow > 80% (2-20 keV),  ~ 1.5-2.1, broad PDS features, rms(0.1-10 Hz) is 10-30% + “quiescent” “quiescent” L x < 10 -4 L max, power law,  ~ 1.9

9 X-ray States, GR, & Accretion Physics State / propertiesGR opportunity ? / physics problem Steep power law High Freq. QPOs:  GR resonance? (M x, a * )  a *  ~ 2.5, QPOs origin of steep power law and QPOs Thermal dominant“spectro. parallax” R in : {N dbb, d, i }  R in (M x, a * )  a * T disk ~ 1 keV range a * 0  1, then R in = 6  1 GM x /c 2 disk spectrum in Kerr metric + MHD + rad. transfer Low Hard (steady jet)jets tap BH spin energy? (impulsive & steady jets?)  ~ 1.7ejection mechanisms; X-ray mechanism; B evolution QuiescenceN.S. vs. B.H. spectra  surface vs. event horizon  ~ 1.9 ADAF/CDAF model disputes; alternative scenarios?

10 Black Hole Emission States Statistics XTE J1550-564 GRO J1655-40 XTE J1118+480 Steep Power Law 26 15 0 Thermal Dominant 147 47 0 Low/hard 22 2 10 Intermediate 57 2 0 Timescales (days) for all BH Binaries (RXTE) duration transitions Steep Power Law 1-10 <1 Thermal Dominant 3-200 1-10 Low/hard 3-200 1-5 Intermediate 3-30 1-3

11 X-ray States : Complications + “intermediate”  ~2.5 impulsive jets state + E cut ? in transitions;

12 More Complications: Fast X-ray Novae SAX J1819.3-2525 (V4641 Sgr) black hole binary (Orosz et al. 2002) ‘Fast X-ray Nova’ 20 min of rage, Sept 15, 1999 (RXTE)  outburst <<  disk flow ~ 20 d

13 High Frequency QPOs (40-450 Hz) source HFQPO  (Hz) GRO J1655-40 300, 450 XTE J1550-564184, 276 GRS 1915+10541, 67, 113, 164 XTE J1859+226190 4U1630-472184 XTE J1650-500 250 H1743-322 160?, 240 ----------- red: 2-30 keVgreen: 6-30 keV blue: 13-30 keV

14 XTE J1550-564: 184, 276 Hz GRO J1655-40:300, 450 Hz Commensurate Frequencies (3:2)

15 HFQPOs and General Relativity “Diskoseismology” (Wagoner 1999; Kato 2001)  Eigenfunctions for adiabatic perturbations  g-modes m={0,1}  o, 4.1 o  ?? Add complexities {thick disk, corona model for SPL, nonlinear effects} Resonance in the Inner Disk (Abramowicz & Kluzniak 2001)  GR has Frequencies for 3 coords {r,  } & non-circular orbits  : r,   or r,   resonance  ‘blob’ orbits? (Stella et al. 1999 for n.s.)… model too simplistic? …ray tracing in Kerr metric (Schnittman & Bertschinger 2003): feasible to produce QPOs at    and    r = 0.667 

16 GR Coordinate Frequencies r,  = f ( M x, r = r / (GM x /c 2 ), a * = cJ/GM x 2 ) azimuth   = c 3 /GM x [ 2  r 3/2 (1+ a * r -3/2 ) ] -1 radial  r = |  | (1 - 6r -1 + 8a * r -3/2 - 3a * 2 r -2 ) 1/2 polar   = |  | (1 - 4a * r -3/2 + 3a * 2 r -2 ) 1/2 Bardeen & Pettersen 1975; Chandrasekhar 1983 Merloni et al. 1999; Markovic 2000; Lamb 2001

17 QPO Pairs (3:2 o ) vs. BH Mass GRO J1655-40, XTE J1550-564, GRS1915+105: plot 2 o vs, M BH  “QPO mass” ( o = 931 Hz / M)  same mechanism AND same spin a * ~ 0.3-0.4 if QPOs are   and   r ? Compare subclasses While model efforts go on.

18 Combining X-ray Timing & Spectroscopy GRO J1655-40 red “x”: no QPOs, thermal dom.  green  : only Low-Freq. QPOs (0.1-20 Hz) blue: LFQPOs + HFQPOs; (300, 450 Hz) steep power law state

19 Combining X-ray Timing & Spectroscopy XTE J1550-564 red “x”: no QPOs, thermal dom.  green  : only Low-Freq. QPOs (0.05-20 Hz); LH and INT states blue: LFQPOs + HFQPOs; (184, 276 Hz) most: steep power-law state

20 Low Frequency QPOs XTE J1550-564 QPOs (4 Hz) rms variations ~ 30% At L x ~ 5 X 10 38 erg cm -2 s -1 (5.3 kpc; ~0.3 L Edd ) ? Spiral waves in a highly magnetized disk? Tagger & Pellat 1999 (transports energy out to wave corotation radius)

21 Low Frequency QPOs Properties  range: 0.05 – 30 Hz (most 0.5 – 10 Hz)  amplitude: 1 – 20 % (rms, 2 – 30 keV)  Q (= /  ) 3 – 20 (typical 8.5)  Phase lags-0.1 to +0.2 (2-6 keV vs. 13-30 keV) X-ray States  Low / Hardsometimes (transitions)  Thermal Dominantgenerally, no  Steep Power Lawyes Physical Correlations   proportional to disk flux (not T disk ; F pow, etc)  Ampl.(E) roughly like power law flux (harder than disk)

22 Sensitive Broad-Band Spectra (e.g. XMM) Other Methods to Deduce Disk Structure Broad Fe K  Emission in B.H. (Profiles require spin? Which states?) XTEJ1550-564 (INT): Miller et al. 2002 XTE J1650-500 (SPL): Miller et al. 2002 GRS1915 (SPL?) Martocchia et al. 2002 V4641 Sgr (LH?) Miller et al. 2002 Disk Reflection Spectra (Reflection vs. states?) e.g. Done et al. 1999; Done & Nayakshin 2001

23 High Resolution Spectra (e.g. Chandra) Other Methods to Deduce Disk Structure Spectral Lines from Hot Gas  Local outflow? disk winds (e.g. in Cir X-1) but no BH cases yet.  Disk atmosphere (? thick disk at high L x ) GRS1915+105: Lee et al. 2001

24 Conclusions Progress in Astrophysics of Black Hole Binaries:  18 Mass Measurements (4-18 M o )  Radio : X-ray efforts secure LH state  steady jet  Prospects (3) for measuring spin  Timing + Energetics  framework to probe disk magnetization and other essential variables Outstanding Problems:  Origin of Steep Power Law component  Strong, Low Frequency QPOs in SPL and INT states  Kerr disk spectral models difficult; ( 5,000+ X-ray spectra)


Download ppt "X-ray States of Black Hole Binaries & Possible Applications for General Relativity Ron Remillard, Center for Space Research, M.I.T. This presentation will."

Similar presentations


Ads by Google